ผลกระทบของภาวะพหุสัณฐาน CYP3A5 และขนาดยา steroids ต่อสัดส่วนของ ระดับความเข้มข้นต่ำสุดต่อขนาดยา tacrolimus ในผู้ปลูกถ่ายไตชาวไทย

Main Article Content

อรรณพ ภู่ประดิษฐ์
สมฤทัย วัชราวิวัฒน์

บทคัดย่อ

วัตถุประสงค์: เพื่อศึกษาอิทธิพลร่วมกัน (interaction effect) ระหว่างภาวะพหุสัณฐาน CYP3A5 และขนาดยา steroids ต่อสัดส่วนของระดับความเข้มข้นต่ำสุด (C0) ต่อขนาดยา (D) tacrolimus (C0/D) ที่ระยะเวลา 1 เดือนหลังการปลูกถ่ายไต โดยควบคุมอิทธิพลของอายุ ระดับฮีโมโกลบิน และระดับอัลบูมิน วิธีการ: ผู้ปลูกถ่ายไตเข้าร่วมการศึกษา 200 คน ผู้ปลูกถ่ายไตทุกคนจะได้รับยากดภูมิคุ้มกัน 3 รายการ ซึ่งประกอบด้วย tacrolimus ในรูปแบบออกฤทธิ์ทันที mycophenolate mofetil หรือ sodium และ steroids ต่อเนื่องภายในระยะเวลา 1 เดือนหลังการปลูกถ่ายไต ในการวิเคราะห์อิทธิพลร่วมกันระหว่างภาวะพหุสัณฐาน CYP3A5 และขนาดยา steroids ต่อ C0/D ของยา tacrolimus ใช้สถิติ two-way analysis of covariance ภาวะพหุสัณฐาน CYP3A5 ประกอบด้วย 2 กลุ่ม คือ CYP3A5 expressers และ non-expresser ขนาดยา steroids ประกอบด้วย 3 กลุ่ม คือ <0.16, 0.16-0.25, และ >0.25 มก./กก./วัน ผลการวิจัย: ไม่พบอิทธิพลร่วมกันระหว่างภาวะพหุสัณฐาน CYP3A5 และขนาดยา steroids ต่อ Log C0/D ของยา tacrolimus (F (2, 192) = 0.859, P= 0.425, ŋp2 = 0.009) อย่างไรก็ตาม ภาวะพหุสัณฐาน CYP3A5 หรือขนาดยา steroids มีผลต่อ Log C0/D ของยา tacrolimus เมื่อควบคุมอายุและฮีโมโกลบิน (F (1, 192) = 48.492, P< 0.001, ŋp2= 0.202); F (2, 192)= 7.695, P= 0.001, ŋp2= 0.074, ตามลำดับ) ค่าเฉลี่ย Log C0/D ในกลุ่ม CYP3A5 expressers ต่ำกว่า non-expressers (1.806, 2.109 (นาโนกรัม/มล.)/(มก./กก./วัน), P< 0.001) ตัวอย่างที่ได้ steroids >0.25 มก./กก./วัน มีค่าเฉลี่ยของ Log C0/D ต่ำกว่ากลุ่มที่ได้ในขนาด 0.16-0.25 และ <0.16 มก./กก./วัน ตามลำดับ (1.865, 1.938, 2.069 (นาโนกรัม/มล.)/(มก./กก./วัน), P= 0.045, P= 0.003, ตามลำดับ) สรุป: ณ เวลา 1 เดือนหลังการปลูกถ่ายไต ไม่พบอิทธิพลร่วมกันระหว่างภาวะพหุสัณฐาน CYP3A5 และขนาดยา steroids ต่อ Log C0/D ของยา tacrolimus อย่างมีนัยสำคัญทางสถิติ ภาวะพหุสัณฐาน CYP3A5 เป็นปัจจัยที่สำคัญมากที่สุดต่อ Log C0/D ของยา tacrolimus

Article Details

บท
บทความวิจัย

References

1. Meier-Kriesche HU, Li S, Gruessner RWG, Fung JJ, Bustami RT, Barr ML, et al. Immunosuppres- sion: evolution in practice and trends, 1994-2004. Am J Transplant 2006; 6: 1111-31.

2. Kidney Disease: Improving Global outcomes (KDIGO) Transplant Work Group. KDIGO Clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009; 9: 1-155.

3. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004; 43: 623-53.

4. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, Johnston A, et al. Opportunities to optimize tacrolimus therapy in solid organ trans- plantation: report of the European consensus conference. Ther Drug Monit 2009; 31: 139-52.

5. Kershner RP, Fitzsimmons WE. Relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. Transplantation 1996; 62: 920-6.

6. Undre NA, Schafer A. Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. European Tacrolimus Multicentre Renal Study Group. Transplant Proc 1998; 30: 1261-3.

7. Hu RH, Lee PH, Tsai MK. Clinical influencing factors for daily dose, trough level, and relative clearance of tacrolimus in renal transplant recipients. Transplant Proc 2000; 32: 1689-92.

8. Christians U, Pokaiyavanichkul T, Chan L. Tacroli- mus. In: Burton ME, Shaw LM, Schentag JJ, Evans WE, editors. Applied pharmacokinetics & pharmacodynamics: principles of therapeutic drug monitoring. 4th ed. United States of America: Lippincott Williams & Wilkins; 2006. p. 529-61.

9. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet 2010; 49: 141-75.

10. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet 2014; 53: 123-39.

11. Provenzani A, Santeusanio A, Mathis E, Notarbar- tolo M, Labbozzetta M, Poma P, et al. Pharmaco- genetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol 2013; 19: 9156-73.

12. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. A new functional CYP3A4 intron 6 polymorphism signific- antly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 2011;57:1574-83.

13.Supanya D, Tassaneeyakul W, Sirivongs D, Pongskul C, Reungjui S, Avihingsanon A, et al. Prevalence of CYP3A5 polymorphism in a Thai population. Thai J Pharmacol 2009; 31: 95-7.

14. Yaowakulpatana K, Vadcharavivad S, Ingsathit A, Areepium N, Kantachuvesiri S, Phakdeekitcharoen B, et al. Impact of CYP3A5 polymorphism on trough concentrations and outcomes of tacrolimus minimization during the early period after kidney transplantation. Eur J Clin Pharmacol 2016; 72: 277-83.

15. Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences.Pharmacogenomics 2004; 5:243-72.

16. Garsa AA, McLeod HL, Marsh S. CYP3A4 and CYP3A5 genotyping by pyrosequencing. BMC Med Genet 2005; 6: 19.

17. Tatro DS. Drug interaction facts 2014. USA: Lippin- cott Williams & Wilkins; 2013.

18. Anglicheau D, Flamant M, Schlageter MH, Martinez F, Cassinat B, Beaune P, et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant 2003; 18: 2409-14.

19. van Duijnhoven EM, Boots JM, Christiaans MH, Stolk LM, Undre NA, van Hooff JP. Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int 2003;16 :721-5.

20. Abbott Laboratories Division. Architect Tacrolimus Ref1L77. USA Abbott Park 2015. p. 1-9.

21.Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012; 24: 69-71.

22.Huitema BE. The analysis of covariance and alternatives statistical methods for experiments, quasi-experiments, and single-case studies. 2nd ed. New Jersey: John Wiley & Sons, Inc; 2011.

23. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175-91.

24. Barry A, Levine M. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant reci- pients. Ther Drug Monit 2010; 32: 708-14.

25. Demeule M, Jodoin J, Beaulieu E, Brossard M, Beliveau R. Dexamethasone modulation of multi- drug transporters in normal tissues. FEBS Lett 1999; 442: 208-14.

26. McCune JS, Hawke RL, LeCluyse EL, Gillenwater HH, Hamilton G, Ritchie J, et al. In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther 2000; 68: 356-66.

27. Shimada T, Terada A, Yokogawa K, Kaneko H, Nomura M, Kaji K, et al. Lowered blood concen- tration of tacrolimus and its recovery with changes in expression of CYP3A and P-glycoprotein after high-dose steroid therapy. Transplantation 2002; 74: 1419-24.

28. Bauer LA. Applied clinical pharmacokinetics. 3th ed. New York: McGraw-Hill; 2014.

29. Praisuwan S, Vadcharavivad S, Avihingsanon A. Hemoglobin levels influence pharmacokinetics of tacrolimus in kidney transplant patients. Thai Phar- maceutical and Health Science 2012; 7: 1-6.

30. Staatz CE, Tett SE. Pharmacokinetic considera- tions relating to tacrolimus dosing in the elderly. Drugs Aging 2005; 22: 541-57.

31. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogene- tics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 2015; 98: 19-24.