ผลของสารสกัดจากผลฟักข้าวต่อการเจริญของเชื้อแบคทีเรียประจำถิ่นบนผิวหนัง Staphylococcus epidermidis และยับยั้งการเจริญของเชื้อก่อโรค Staphylococcus aureus
Keywords:
Gac, Commensal Bacteria, Pathogenic Bacteria, Staphylococcus epidermidis, Staphylococcus aureusAbstract
Gac fruit (Momordica cochinchinensis (Lour.) Spreng.) is a plant that contained with various kind of importance substances, especially, phenolic and flavonoid compounds, which has antioxidant activity and antimicrobial activity, against pathogenic bacteria. Concurrently, it is beneficial for the growth of probiotics such as Staphylococcus epidermidis, which prevents pathogenic microorganisms on the skin. This study is aimed to determine the total phenolic and total flavonoids compounds of gac fruit extract, including the growth-promoting effect of S. epidermidis, which affects to inhibit of the growth of Staphylococcus aureus. The results revealed that the highest total phenolic content found in the peel extract (29.17 ± 0.28 mg GAE/g DW) and highest flavonoid content found in the aril extract (18.28 ± 0.89 mg QE/g DW). It was found that the extracts of the peel had the highest antibacterial activity, with the minimum inhibitory concentration at 50.00 mg/ml and the minimum bactericidal concentration at 100.00 mg/ml. The growth-promoting effect of S. epidermidis, the peel extracts had been used. At the concentration as 12.50 mg/ml can promote the growth of S. epidermidis similar to the control group. In addition, the result indicated that the highest antibacterial control was observed when used cell free supernatant from this condition to co-culture with S. aureus (10.37 ± 0.31 log colonies/ml). This discovery indicates the benefits of gac fruit in terms of controlling skin pathogens and might be further developed for the development of healthy skin care products in the future.
References
ณัฐกานต์ วงศ์สีลม, จามจุรี จินะตา, บุษบา มะโนแสน, จิรรัชต์ กันทะขู้, สุรีพร วันควร และ สุภาวดี ศรีแย้ม. (2557). การศึกษาฤทธิ์ต้านแบคทีเรียก่อโรคในอาหารของน้ำมันหอมระเหยจากมะแขว่น. วารสารวิจัยและพัฒนา มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, 37(1), 3-15.
เอนก หาลี, & บุณยกฤต รัตนพันธุ์. (2559). ผลของชนิดตัวทำละลายและความเข้มข้นของกรดซิตริกที่มีต่อการสกัดสารต้านอนุมูลอิสระจากข้าวหอมนิล. วารสารวิจัยและพัฒนา มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, 39(3), 353-364.
วิเชษฐ์ ลีลามานิตย์. (2557). ฟักข้าว. ค้นเมื่อ 1 ตุลาคม 2564, จาก https://pharmacy.mahidol.ac.th/knowledge/files/ 0223.pdf
Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E., & El-Hamahmy, R. M. (2007). Egyptian mango by-product 1: Compositional quality of mango seed kernel. Food Chemistry, 103(4), 1134-1140.
Clinical and Laboratory Standards Institute [CLSI]. (2009). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard-eighth edition. CLSI documents M07-A8. Clinical and Laboratory Standard Institute, Wayne, PA.
Daduang, J., Daduang, S., Hongsprabhas, P., & Boonsiri, P. (2011). High phenolics and antioxidants of some tropical vegetables related to antibacterial and anticancer activities. African Journal of Pharmacy and Pharmacology, 5(5), 608-615.
Jang, I. T., Yang, M., Kim, H. J., & Park, J. K. (2020). Novel cytoplasmic bacteriocin compounds derived from Staphylococcus epidermidis selectively kill Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). Pathogens, 9(2), 1-10.
Kaewchomphunuch, T., Charoenpichitnunt, T., Thongbaiyai, V., Ngamwongsatit, N. & Kaeoket, K. (2022). Cell-free culture supernatants of Lactobacillus spp. and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in Thailand. BMC Veterinary Research, 18(60), 1-13.
Kha, T. C., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98(3), 385-392.
Li, B. B., Smith, B., & Hossain, M. (2006). Extraction of phenolics from citrus peels: I, solvent extraction method. Separation and Purification Technology, 48(2), 182-188.
Majdanik, M. M., Kepa, M., Wojtyczka, R. D., Idzik, D., & Wasik, T. J. (2018). Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health, 22(15), 1-18.
Nakatsuji, T., Chen, T. H., Butcher, A. M., Trzoss, L. L., Nam, S. J., Shirakawa, K. T., et al. (2018). A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Health and Medicine, 4(2), 1-9.
Ozdal, T., Sela, D. A., Xiao, J., Boyacioglu, D., Chen, F., & Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 8(2), 1-36.
Pacheco-Ordaz, R., Wall-Medrano, A., Goni, M. G., Ramos-Clamont-Montfort, G., Ayala-Zavala, J. F., & Gonzalez-Aguilar, G. A. (2018). Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Letters in Applied Microbiology, 66(1), 25-31.
Sukumaran, S. et al. (2011). Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pacific Journal of Tropical Medicine, 4(9), 735-738.
Tinrat, S. (2014). Comparison of antioxidant and antimicrobial activities of unripe and ripe fruit extracts of Momordica cochinchinensis Spreng (gac fruit). International Journal of Pharmaceutical Sciences Review and Research, 28(1), 75-82.
Xiaoyong, S., & Luming, C. (2014). Phenolic constituents, antimicrobial and antioxidant properties of blueberry leaves (V5). Journal of Food and Nutrition Research, 2(12), 973-979.
Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2015). Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Current Medicinal Chemistry, 22(1), 132-149.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Faculty of Public Health, Khon Kaen University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.