Development of a Web Application for Screening Warfarin Prescriptions in the Outpatient Warfarin Clinic at Mahasarakham Hospital
Main Article Content
Abstract
Objective: To develop and evaluate a web application for screening warfarin prescriptions for outpatients at the Warfarin Clinic of Mahasarakham Hospital. The evaluation focused on its effectiveness in reducing time for prescription screening and on user satisfaction among pharmacists. Methods: The web application was developed following the Software Development Life Cycle, using ReactJS for the frontend and connecting to the hospital's MySQL database. Its effectiveness was evaluated by comparing prescription screening times before and after implementation. The satisfaction of 13 participating pharmacists was assessed using the mHealth App Usability Questionnaire (MAUQ). Results: The developed web application successfully consolidated necessary data, simplified complex workflows, and featured automated calculation functions. It significantly reduced the mean prescription screening time from 3.02 minutes to 2.69 minutes (a 10.93% reduction; 95% CI: 0.17–0.49, P<0.001). Pharmacists reported high satisfaction, with scores ranging from "agree" to "strongly agree" (mean scores 6.14-6.44 out of 7) across the three main domains: Ease of Use (6.44±0.39), Usefulness (6.39±0.50), and System Information Management (6.14±0.49). Conclusion: The developed web application effectively reduced warfarin prescription screening time and garnered high user satisfaction regarding its convenience, data management capabilities, and practical benefits for daily workflow.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ผลการวิจัยและความคิดเห็นที่ปรากฏในบทความถือเป็นความคิดเห็นและอยู่ในความรับผิดชอบของผู้นิพนธ์ มิใช่ความเห็นหรือความรับผิดชอบของกองบรรณาธิการ หรือคณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ทั้งนี้ไม่รวมความผิดพลาดอันเกิดจากการพิมพ์ บทความที่ได้รับการเผยแพร่โดยวารสารเภสัชกรรมไทยถือเป็นสิทธิ์ของวารสารฯ
References
Telles-Garcia N, Dahal K, Kocherla C, Lip GYH, Reddy P, Dominic P. Non-vitamin K antagonists oral anticoagulants are as safe and effective as warfarin for cardioversion of atrial fibrillation: a systematic review and meta-analysis. Int J Cardiol. 2018; 268: 143–8. doi:10.1016/j.ijcard.2018.04.034.
Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012; 141(2 Suppl): e44S–e88S.
Hylek EM, Skates SJ, Sheehan MA, Singer DE. An analysis of the lowest effective intensity of prophylactic anticoagulation for patients with nonrheumatic atrial fibrillation. N Engl J Med. 1996; 335:540–6. doi:10.1056/NEJM199608223350802.
Barcellona D, Contu P, Sorano GG, Piga M, Arru L, Marongiu F. The management of oral anticoagulant therapy: the patient’s point of view. Thromb Haemost. 2000; 83: 49–53.
Koppel R, Metlay JP, Cohen A, Abaluck B, Localio AR, Kimmel SE, et al. Role of computerized physician order entry systems in facilitating medica- tion errors. JAMA. 2005; 293: 1197–203. doi:10.100 1/jama.293.10.1197.
Zhou L, Bao J, Setiawan IM, Saptono A, Parmanto B. The mHealth App Usability Questionnaire (MAUQ): Development and validation Study. JMIR Mhealth Uhealth. 2019; 7: e11500. doi:10.2196/ 11500
Calloway S, Akilo HA, Bierman KW. Impact of a clinical decision support system on pharmacy clinical interventions, documentation efforts, and costs. Hosp Pharm. 2013; 48: 744–52.
Dabidian A, Kinny F, Steichert M, Schlottau S, Bartel A, Schwender H, Laeer S. Impact of a clinical decision support system on the efficiency and effectiveness of performing medication reviews in community pharmacies: a randomized controlled trial. Healthcare. 2024; 12: 2491.
Lee JH, Jang J, Shim B, et al. A workflow based clinical decision support system through integration of clinical workflow and knowledge processing. Int J Innov Comput Inf Control 2012; 8: 5251–64.
Robert L, Cuvelier E, Rousselière C, Gautier S, Odou P, Beuscart J-B, Décaudin B. Detection of drug-related problems through a clinical decision support system used by a clinical pharmacy team. Healthcare 2023; 11: 827. doi:10.3390/healthcare11060827.
Kim J, Chae Y, Kim S, et al. A study on user satisfaction regarding the clinical decision support system (CDSS) for medication. Healthc Inform Res. 2012; 18: 35–43.
English D, Ankem K, English K. Acceptance of clinical decision support surveillance technology in the clinical pharmacy. Inform Health Soc Care. 2017; 42: 135–52.
Olakotan O, Yusof M, Puteh SW. A systematic review on CDSS alert appropriateness. Stud Health Technol Inform. 2020; 270: 906–10.
Graafsma J, van de Garde EMW, Derijks HJ, Hoge RHL, Klopotowska JE, Karapinar-Carkit F, van den Bemt PMLA. Efficiency of computerized clinical decision support systems involving anticoagulants: A flashmob study in Dutch hospital pharmacies. Br J Clin Pharmacol 2025; 91: 157–65.