Effect of Melatonin on Alzheimer’s disease

Authors

  • Pattama Panmak School of Nursing, Eastern Asia University
  • Arunnee Wongpandeed School of Nursing, Eastern Asia University

Keywords:

Alzheimer’s disease, melatonin

Abstract

Alzheimer’s Disease: AD is the most common cause of dementia, a progressive neurodegenerative disease for which there is currently no cure. The disease is strongly associated with increasing age and presents with progressively worsening cognitive and memory impairments. Due to the early stages of the disease difficultly in diagnosing, lead to worse symptoms in the majority of AD patients. Two hallmark pathologies required for AD are amyloid plaques and neurofibrillary tangles. These peptides contribute to neurotoxicity and play a central role in AD pathology. Melatonin is the hormone that mainly secreted by pineal gland in the brain. The reduced levels of melatonin are found in elderly people and AD patients. Previous studies documented melatonin improves cognition deficit. Furthermore, melatonin attenuates amyloid plaques and Neurofibrillary Tangles: NFT both in vivo and in vitro. Therefore, these evidence from the previous studies suggests that melatonin may be the new choice of treatment medicine in the future for AD.

References

Abduljawad, A. A., Elawad, M. A., Elkhalifa, M. E. M., Ahmed, A., Hamdoon, A. A. E., Salim, L. H. M., Ashraf, M., Ayaz, M., Hassan, S. S. U., & Bungau, S. (2022). Alzheimer’s Disease as a Major Public Health Concern: Role of Dietary Saponins in Mitigating Neurodegenerative Disorders and Their Underlying Mechanisms. Molecules (Basel, Switzerland), 27(20), 6804. https://doi.org/10.3390/molecules27206804

Alzheimer’s Association. (2025). Alzheimer’s disease facts and figures. Retrieved from https://www.alz.org/alzheimers-dementia/facts-figures

Andrade, M. K., Souza, L. C., Azevedo, E. M., Bail, E. L., Zanata, S. M., Andreatini, R., & Vital, M. A. B. F. (2023). Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer’s disease model. IBRO Neuroscience Reports, 14, 264–272. https://doi.org/10.1016/j.ibneur.2023.01.005

Burns, A., & Iliffe, S. (2009). Alzheimer’s disease. BMJ (Clinical Research ed.), 338, b158. https://doi.org/10.1136/bmj.b158

Esposito, E., & Cuzzocrea, S. (2010). Antiinflammatory activity of melatonin in central nervous system. Current Neuropharmacology, 8(3), 228–242. https://doi.org/10.2174/157015910792246155

Förstl, H., & Kurz, A. (1999). Clinical features of Alzheimer’s disease. European Archives of Psychiatry and Clinical Neuroscience, 249(6), 288–290. https://doi.org/10.1007/s004060050101

Frank, E. M. (1994). Effect of Alzheimer’s disease on communication function. Journal of the South Carolina Medical Association (1975), 90(9), 417–423. Retrieved from https://www.pubmed.ncbi.nlm.nih.gov/7967534/

Guo, H., & Zhang, Y. (2020). Resting state fMRI and improved deep learning algorithm for earlier detection of Alzheimer’s Disease. in IEEE Access, 8, 115383-115392. https://doi.org/10.1109/ACCESS.2020.3003424.

Hardeland, R., & Pandi-Perumal, S. R. (2005). Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutrition & Metabolism, 2, 22. https://doi.org/10.1186/1743-7075-2-22

Hardeland, R., Cardinali, D. P., Srinivasan, V., Spence, D. W., Brown, G. M., & Pandi-Perumal, S. R. (2011). Melatonin--a pleiotropic, orchestrating regulator molecule. Progress in neurobiology, 93(3), 350–384. https://doi.org/10.1016/j.pneurobio.2010.12.004

Hernández, F., & Avila, J. T. (2007). Tauopathies. Cellular and molecular life sciences: CMLS, 64(17), 2219–2233. https://doi.org/10.1007/s00018-007-7220-x

Hooper, N. M. (2005). Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochemical Society Transactions, 33(Pt 2), 335–338. https://doi.org/10.1042/BST0330335

Kumar, A., Sidhu, J., Lui, F., & Tsao, J. W. (2024). Alzheimer Disease. In: StatPearls. Treasure Island (FL): StatPearls. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK499922/

Lahiri, D. K. (1999). Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. Journal of Pineal Research, 26(3), 137–146. https://doi.org/10.1111/j.1600-079x.1999.tb00575.x

Lahiri, D. K., Chen, D., Ge, Y. W., Bondy, S. C., & Sharman, E. H. (2004). Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. Journal of Pineal Research, 36(4), 224–231. https://doi.org/10.1111/j.1600-079X.2004.00121.x

Matsubara, E., Bryant-Thomas, T., Pacheco Quinto, J., Henry, T. L., Poeggeler, B., Herbert, D., Cruz-Sanchez, F., Chyan, Y. J., Smith, M. A., Perry, G., Shoji, M., Abe, K., Leone, A., Grundke-Ikbal, I., Wilson, G. L., Ghiso, J., Williams, C., Refolo, L. M., Pappolla, M. A., Chain, D. G., & Neria, E. (2003). Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. Journal of Neurochemistry, 85(5), 1101–1108. https://doi.org/10.1046/j.1471-4159.2003.01654.x

Mekha, P., Teeyasuksaet, N., & Osathanunkul, K. (2024). Comparison of Performance Using Neural Networks with Various Learning Configurations for Image Classification of Alzheimer’s Disease in Humans. Maejo Information Technology and Innovation Journal, 10(4), 163-180. Retrieved from https://mitij.mju.ac.th/ARTICLE/R67049.pdf. (in Thai)

Mongkalig, M., & Thaipisuttikul, P. (2023). Prevalence of hyperhomocysteinemia in Alzheimer’s disease and vascular dementia at outpatient unit in Ramathibodi hospital: Retrospective study. Journal of the Psychiatric Association of Thailand, 68(1). 115-125. Retrieved from https://he01.tci-thaijo.org/index.php/JPAT/article/view/260795 (in Thai)

Mukda, S., Panmanee, J., Boontem, P., & Govitrapong, P. (2016). Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neuroscience letters, 621, 39–46. https://doi.org/10.1016/j.neulet.2016.04.013

Olivieri, G., Hess, C., Savaskan, E., Ly, C., Meier, F., Baysang, G., Brockhaus, M., & Müller-Spahn, F. (2001). Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. Journal of pineal research, 31(4), 320–325. https://doi.org/10.1034/j.1600-079x.2001.310406.x

Pandi-Perumal, S. R., Cardinali, D. P., Zaki, N. F. W., Karthikeyan, R., Spence, D. W., Reiter, R. J., & Brown, G. M. (2022). Timing is everything: Circadian rhythms and their role in the control of sleep. Frontiers in neuroendocrinology, 66, 100978. https://doi.org/10.1016/j.yfrne.2022.100978

Panmak, P. (2018). Effect of Exercise on Alzheimer’s Disease. EAU Heritage Journal Science and Technology, 12(3), 25-32. Retrieved from https://he01.tci-thaijo.org/index.php/EAUHJSci/article/view/157513 (in Thai)

Panmak, P., Nopparat, C., Permpoonpattana, K., Namyen, J., & Govitrapong, P. (2021). Melatonin protects against methamphetamine-induced Alzheimer’s disease-like pathological changes in rat hippocampus. Neurochemistry International, 148, 105121. https://doi.org/10.1016/j.neuint.2021.105121

Pimsarn, N., limlikidaksorn, C., & Buachsantia, N. (2023). Understanding melatonin : health benefits and effects. Journal of MCU Nakhondhat, 10(7), 246–254. retrieved from https://so03.tci-thaijo.org/index.php/JMND/article/view/270749. (in Thai)

Shukla, M., Govitrapong, P., Boontem, P., Reiter, R. J., & Satayavivad, J. (2017). Mechanisms of Melatonin in Alleviating Alzheimer’s Disease. Current Neuropharmacology, 15(7), 1010–1031. https://doi.org/10.2174/1570159X15666170313123454

Song, W., & Lahiri, D. K. (1997). Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. Journal of molecular neuroscience: MN, 9(2), 75–92. https://doi.org/10.1007/BF02736852

Sumsuzzman, D. M., Choi, J., Jin, Y., & Hong, Y. (2021). Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neuroscience and Biobehavioral Reviews, 127, 459–473. https://doi.org/10.1016/j.neubiorev.2021.04.034

Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N., & Fougerou, C. (2017). Melatonin: Pharmacology, functions and therapeutic benefits. Current Neuropharmacology, 15(3), 434–443. https://doi.org/10.2174/1570159X14666161228122115

Wu, Y. H., & Swaab, D. F. (2005). The human pineal gland and melatonin in aging and Alzheimer’s disease. Journal of pineal research, 38(3), 145–152. https://doi.org/10.1111/j.1600-079X.2004.00196.

Zhang, Y. C., Wang, Z. F., Wang, Q., Wang, Y. P., & Wang, J. Z. (2004). Melatonin attenuates beta-amyloid-induced inhibition of neurofilament expression. Acta Pharmacologica Sinica, 25(4), 447–451. retrieved from http://www.chinaphar.com/article/view/8055/8643

Downloads

Published

2025-08-18

How to Cite

Panmak, P., & Wongpandeed, A. . (2025). Effect of Melatonin on Alzheimer’s disease. EAU Heritage Journal Science and Technology (Online), 19(2), 27–37. retrieved from https://he01.tci-thaijo.org/index.php/EAUHJSci/article/view/277651

Issue

Section

Academic Articles