Drug-Drug Interactions of Metformin in Diabetes Treatment
Main Article Content
Abstract
Metformin is a blood sugar-lowering medication in the biguanide class. Its mechanism of action involves inhibiting glucose production in the liver, which suppresses gluconeogenesis and lipolysis. Additionally, it reduces the secretion of growth hormone, adrenocorticotropic hormone (ACTH) and follicle stimulating hormone (FSH) from the pituitary gland, thereby decreasing insulin resistance. The effectiveness of metformin in lowering HbA1c ranges from 1-2% from baseline. After absorption into the bloodstream, metformin is distributed throughout the body via OCT1 and OCT3 transporters. It does not undergo hepatic metabolism and is excreted unchanged through OCT1 and MATE1 transporters found in the liver and kidneys. Concomitant use of metformin with drugs that inhibit OCT and MATE transporters can increase metformin levels in the bloodstream. Such drugs include INSTI antiviral drugs, trimethoprim, cephalexin, rifampicin, pyrimethamine, H2 receptor inhibitors, proton pump inhibitors, ranolazine, anti-cancer drugs, and beta-adrenergic blockers. Additionally, the use of metformin with drugs that increase gastric emptying time, such as anticholinergics, may enhance metformin absorption in the small intestine. Furthermore, exposure to radiographic contrast agents that are nephrotoxic can lead to acute kidney failure, reducing metformin excretion and increasing the risk of lactic acidosis. Heavy alcohol consumption may also contribute to lactic acidosis. Therefore, patients taking metformin should avoid excessive alcohol intake to minimize the risk of this condition. Drug interactions that increase metformin levels may lead to severe adverse effects, including metformin-induced lactic acidosis (MILA) or metformin-associated lactic acidosis (MALA). Thus, drug interaction is a critical issue to be concerned together with comorbidities and concurrent medications. Patient counseling is essential to prevent severe adverse effects resulting from drug interactions.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ผลการวิจัยและความคิดเห็นที่ปรากฏในบทความถือเป็นความคิดเห็นและอยู่ในความรับผิดชอบของผู้นิพนธ์ มิใช่ความเห็นหรือความรับผิดชอบของกองบรรณาธิการ หรือคณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ทั้งนี้ไม่รวมความผิดพลาดอันเกิดจากการพิมพ์ บทความที่ได้รับการเผยแพร่โดยวารสารเภสัชกรรมไทยถือเป็นสิทธิ์ของวารสารฯ
References
IDF Diabetes Atlas. Diabetes around the world in 2021 [online]. 2024 [cited Sep 20, 2024]. Available from: diabetesatlas.org
Apidechkul T, Chomchiei C, Upala P, Tamornpark R. Epidemiology of prediabetes mellitus among hill tribe adults in Thailand. PLoS One 2022; 17: e0271900.
Tunsuchart K, Lerttrakarnnon P, Srithanaviboonchai K, Likhitsathian S, Skulphan S. Type 2 diabetes mellitus related distress in Thailand. Int J Environ Res Public Health 2020; 17: 2329
Bailey CJ. Metformin: historical overview. Diabeto- logia 2017; 60: 1566-76.
Diabetes Association of Thailand. Clinical practice guideline for diabetes 2023 [online] 2024 [cited Sep 25, 2024]. Available from: www.dmthai.org/new/in dex.php/sara-khwam-ru/bukhlakr-thangkar-phaethy/ cpg/naewthang-wech-ptibati-sahrab-rokh-bea-hwan- 2567
National Drug Policy Division. The National Drug System Development Committee announced updates to the National List of Essential Drugs (No. 2) on Aug 30, 2024 [online] 2025 [cited Feb 8, 2025]. Available from: ndp.fda.moph.go.th/nlem/67-2
American Diabetes Association Professional Practice Committee. Introduction and methodology: standard of care in diabetes [online]. 2025 [cited Feb 4, 2025]. Available from: diabetesjournals.org/care/article/48/ Supplement_1/S1/157562/Introduction-and-Methodo logy-Standards-of-Care-in
Uptodate. Metformin: Drug information [online]. 2024 [cited Sep 2, 2024]. Available from: www.uptodate. com/contents/metformin-drug-information?search=m etformin&source=search_ result&selectedTitle= 1%7 E150&usage_type=panel&kp_tab=drug_general&dis play_rank=1#F193863
Micromedex. metformin [online]. 2024 [cited Sep 5, 2024]. Available from: www.micromedexsolutions .com/micromedex2/librarian/PFDefaultActionId/evidencexpert.DoIntegratedSearch?navitem=topHome&isToolPage=true#
Cheng FF, Liu YL, Du J, Lin JT. Metformin's mechanisms in attenuating hallmarks of aging and age-related disease. Aging Dis 2022; 13: 970-86.
Zhu L, Yang K, Ren Z, Yin D, Zhou Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl Oncol 2024; 44: 101945.
Cheng C, Lin CH, Tsai YW, Tsai CJ, Chou PH, Lan TH. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J Gerontol A Biol Sci Med Sci 2014; 69: 1299-305.
Richy FF, Sabido-Espin M, Guedes S, Corvino FA, Gottwald-Hostalek U. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care 2014; 37: 2291-5.
Blumenberg A, Benabbas R, Sinert R, et al. Do patients die with or from metformin-associated lactic
acidosis (MALA)?: Systematic review and meta-analysis of pH and lactate as predictors of mortality in MALA. J Med Toxicol 2020; 16: 222-9.
Thammavaranucupt K, Phonyangnok B, Parapiboon W, Wongluechai L, Pichitporn W, Sumrittivanicha J, et al. Metformin-associated lactic acidosis and factors associated with 30-day mortality. PLoS One 2022; 17: e0273678.
Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 1996; 30: 359-71.
Rivera D, Onisko N, Cao JD, Koyfman A, Long B. High risk and low prevalence diseases: Metformin toxicities. Am J Emerg Med 2023; 72: 107-12.
Schwartz SS, Epstein S, Corkey BE, Grant SF, Gavin JR 3rd, Aguilar RB. The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema. Diabetes Care 2016; 39: 179-86.
Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2012; 22: 820-7.
Stage TB, Brøsen K, Christensen MM. A comprehen sive review of drug-drug interactions with metformin . Clin Pharmacokinet 2015; 54: 811-24.
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabotologia 2017; 60: 1577-85.
Diabetes prevention program research group. Reduction in the incident of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403.
Diabetes Prevention Program Research Group. Long-term effects of metformin on diabetes prevention: Identification of subgroups that benefited most in the diabetes prevention program and diabetes prevention program outcomes study. Diabetes Care 2019; 42: 601-8.
American Diabetes Association Professional Practice Committee. Standards of care in diabetes-2025. Diabetes Care 2025; 48: S306–20.
ACOG Practice Bulletin No. 190: Gestational diabetes mellitus. Obstet Gynecol 2018; 131: e49-e64.
Attia GM, Almouteri MM, Alnakhli FT. Role of metformin in polycystic ovary syndrome (PCOS)-related infertility. Cureus 2023; 15: e44493.
Morin-Papunen L, Vauhkonen I, Koivunen R, Ruokonen A, Martikainen H, Tapanainen JS. Metformin versus ethinyl estradiol-cyproterone acetate in the treatment of nonobese women with polycystic ovary syndrome: a randomized study. J Clin Endocrinol Metab 2003; 88: 148-56.
Dayabandara M, Hanwella R, Ratnatunga S, Seneviratne S, Suraweera C, de Silva VA. Antipsychotic-associated weight gain: management strategies and impact on treatment adherence. Neuropsychiatr Dis Treat 2017; 13: 2231-41.
Fitzgerald I, O'Connell J, Keating D, Hynes C, McWilliams S, Crowley EK. Metformin in the management of antipsychotic-induced weight gain in adults with psychosis: development of the first evidence-based guideline using GRADE methodo- logy. Evid Based Ment Health 2022; 25: 15-22.
Pakkir Maideen NM, Jumale A, Balasubramaniam R. Drug Interactions of metformin involving drug transporter proteins. Adv Pharm Bull 2017; 7: 501-5.
May M, Schindler C. Clinically and pharmacologi- cally relevant interactions of antidiabetic drugs. Ther Adv Endocrinol Metab 2016; 7: 69-83.
Clinicalinfo. Guidelined for the use of antiretroviral agents in adults and adolescents with HIV [online]. 2024 [cited Sep 20, 2024]. Available from: clinical info.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult -and-adolescent-arv/drug-interactions-insti
Song IH, Zong J, Borland J, et al. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Acquir Immune Defic Syndr 2016; 72: 400-7.
Naccarato M, Yoong D, Fong IW. Dolutegravir and metformin: a case of hyperlactatemia. AIDS 2017; 31: 2176-7.
Grün B, Kiessling MK, Burhenne J, et al. Trimetho prim-metformin interaction and its genetic modula- tion by OCT2 and MATE1 transporters. Br J Clin Pharmacol 2013; 76: 787-96.
Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact 2002; 19: 41-8.
Cho SK, Yoon JS, Lee MG, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther 2011; 89: 416-21.
Kusuhara H, Ito S, Kumagai Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 2011; 89: 837-44.
Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 1987; 23: 545-51.
Cho SK, Chung JY. The MATE1 rs2289669 polymor phism affects the renal clearance of metformin following ranitidine treatment. Int J Clin Pharmacol Ther 2016; 54: 253-62.
Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, Goswami S, Stocker SL, Zhang X, Huang Y, Brett CM, Savic RM, Giacomini KM. The effect of famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet 2016; 55: 711-21.
Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS One 2011; 6: e22163.
Ali F, Khan M, Aamir K, Mughal MA. Synergistic effects of omeprazole and metformin on glycemic control in type 2 diabetic patients. A randomized clinical study. J Dow Univ Health Sci 2017; 11: 24-8.
Kim A, Chung I, Yoon SH, Yu KS, Lim KS, Cho JY. et al. Effects of proton pump inhibitors on metformin pharmacokinetics and pharmacodynamics. Drug Metab Dispos 2014; 42: 1174-9.
Ding Y, Jia Y, Song Y, Lu C, Li Y, Chen M, Wang M, Wen A. The effect of lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects. Eur J Clin Pharmacol 2014; 70: 141-6.
Liu G, Wen J, Guo D, Wang Z, Hu X, Tang J, Liu Z, Zhou H, Zhang W. The effects of rabeprazole on metformin pharmacokinetics and pharmacodynamics in Chinese healthy volunteers. J Pharmacol Sci 2016; 132: 244-8.
Flory J, Haynes K, Leonard CE, Hennessy S. Proton pump inhibitors do not impair the effectiveness of metformin in patients with diabetes. Br J Clin Pharmacol 2015; 79: 330-6.
Zack J, Berg J, Juan A, et al. Pharmacokinetic drug-drug interaction study of ranolazine and metformin in subjects with type 2 diabetes mellitus. Clin Pharmacol Drug Dev 2015; 4: 121-9.
Johansson S, Read J, Oliver S, et al. Pharmacoki netic evaluations of the co-administrations of vande tanib and metformin, digoxin, midazolam, omepra zole or ranitidine. Clin Pharmacokinet 2014; 53: 837-47.
Pellegrinotti M, Fimognari FL, France A, et al. Erloti nib-induced hepatitis complicated by fatal lactic acidosis in an elderly man with lung cancer. Ann Pharmacother 2009; 43: 543-5
Menematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters, OCTs, and multidrug and toxic compound extrusion proteins, MATEs. Mol Cancer Ther 2011; 10: 531-9.
Ren J, Zhou Y, Zhang G, et al. Role of age-related decrease of renal organic cation transporter 2 in the effect of atenolol on renal excretion of metformin in rats. Eur J Drug Metab Pharmacokinet 2015; 40: 349–54.
Ma YR, Shi AX, Qin HY, Zhang T, Wu YF, Zhang GQ. et al. Metoprolol decreases the plasma exposure of metformin via the induction of liver, kidney and muscle uptake in rats. Biopharm Drug Dispos 2016; 37: 511-21.
Amin M, Suksomboon N. Pharmacotherapy of type 2 diabetes mellitus: an update on drug-drug interactions. Drug Saf 2014; 37: 903-19.
Faucon AL, Bobrie G, Clément O. Nephrotoxicity of iodinated contrast media: From pathophysiology to prevention strategies. Eur J Radiol 2019; 116: 231-41.
Baerlocher MO, Asch M, Myers A. Metformin and intravenous contrast. CMAJ 2013; 185: E78.
American College of Radiology. ACR manual on contrast media [online]. 2024 [cited Sep 15, 2024]. Available from: www.acr.org/-/media/ACR/Files/Clini cal-Resources/Contrast_Media.pdf# page46
Emanuele NV, Swade TF, Emanuele MA. Conse quences of alcohol use in diabetics. Alcohol Health Res World. 1998; 22: 211-19.
The national institute on alcohol abuse and alcoholism. The basics: Defining how much alcohol is too much [online]. 2024 [cited Oct 10, 2024]. Available from: www.niaaa.nih.gov/health-professio nals-communities/core-resource-on-alcohol/basics-defining-how-much-alcohol-too-much#pub-toc2