The Study of Peroxidase-mimic Activity of Tetaphenylporphyrin (TPP) and Metalloporphyrin (FeTOMPP)
Keywords:
Tetraphenylporphyrin, Metalloporphyrin, peroxidase, mimic activity oxidationAbstract
Tetraphenylporphyrin--TPP and metalloporphyrin--FeTOMPP were used to test the peroxidase-like activity. The results showed that TPP and FeTOMPP were capable of oxidizing 3,3’,5,5’-tetramethybenzidine--
TMB, a colorless substrate of peroxidase, into blue in the presence of H2O2. The study of the optimum conditions of TPP and FeTOMPP found that the optimum conditions of TPP were similar to those of FeTOMPP, such as pH at 6 and temperature at 30 oC. The optimum amounts of TPP and FeTOMPP were different, as the optimum amounts of TPP and FeTOMPP were 50 g/ml and 35 g/ml, respectively. The comparative study of peroxidase-like activity between TPP and FeTOMPP indicated that FeTOMPP had higher efficiency in peroxidase mimics than that of TPP.
References
Alonso-Castro, A. J., Zapata-Morales, J. R., Hernández-Munive, A., Campos-Xolalpa, N., Pérez-Gutiérrez, S., & Pérez-González, C., (2015). Synthesis, antinociceptive and anti-inflammatory effects of porphyrins. Bioorganic & Medicinal Chemistry, 23(10), 2529-2537. https://doi.org/10.1016/j.bmc.2015.03.043
Chou, J., Kosal, M. E., Nalwa, H. S., Rakow, N. A., & Suslick, K. S. (2000). Applications of porphyrins and metalloporphyrins to materials chemistry. ChemInform, 6(41), 43-131. https://suslick.scs.illinois.edu/documents/porphmaterials.nofigs.pdf
Ellis, W. C., Tran, C. T., Denardo, M. A., Fischer, A., Ryabov, A. D., & Collins, T. J. (2009). Design of more powerful iron-TAML peroxidase enzyme mimics. Journal of the American Chemical Society, 131(50), 18052–18053. https://doi.org/10.1021/ja9086837
Feng, D., Gu, Z. Y., Li, J. R., Jiang, H. L., Wei, Z., & Zhou, H. C. (2012). Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angewandte Chemie (International ed. in English), 51(41), 10307–10310. https://doi.org/10.1002/anie.201204475
Filizola, M., & Loew, G. H. (2000). Role of protein environment in horseradish peroxidase compound I formation: Molecular dynamics simulations of horseradish peroxidase-HOOH complex. Journal of the American Chemical Society, 22(1), 18–25. https://doi.org/10.1021/ja992793z
Gouterman, M. (1961). Spectra of Porphyrins. Journal of Molecular Spectroscopy, 6, 138-163. https://doi.org/10.1016/0022-2852(61)90236-3
Gust, D., Moore, T. A., & Moore, A. L. (2001). Mimicking photosynthetic solar energy transduction. Accounts of Chemical Research, 34(1), 40–48. https://doi.org/10.1021/ar9801301
Hu, Q., Hu, W., Kong, J., & Zhang, X. (2015). Ultrasensitive electrochemical DNA biosensor by exploiting hematin as efficient biomimetic catalyst toward in situ metallization. Biosensors & bioelectronics, 63, 269–275. https://doi.org/10.1016/j.bios.2014.07.034
Josephy, H., Eling, T., & Mason, R. (1982). The horseradish peroxidase-catalyzed oxidation of 3,5,3’,5’-tetramethylbenziding. Free radical and charge transfer complex intermediates. Journal of Biological Chemistry, 257(7), 3669-3675. https://doi.org/10.1016/S0021-9258(18)34832-4
Kumar, U., Dorsey, J. G., Caruso, J. A., & Evans, E. H. (1994). Metalloporphyrin speciation by liquid chromatography and inductively coupled plasma-mass spectrometry. Journal of Chromatographic Science, 32(7), 282–285. https://doi.org/10.1093/chromsci/32.7.282
Ochsner M. (1997). Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology. B, Biology, 39(1), 1–18. https://doi.org/10.1016/s1011-1344(96)07428-3
Pavinatto, F.J., Gameiro, A. F., Hidalgo, A. A., Dinelli, L. R., Romualdo, L. L., Batista, A. A., Barbosa Neto, N. M., Ferreira, M., & Oliveira, O. N. (2008). Langmuir and Langmuir-Blodgett (LB) films of tetrapyridyl metalloporphyrins. Applied Surface Science, 254(18), 5946-5952. https://doi.org/10.1016/j.apsusc.2008.03.162
Phromasatit, T., Arpornmaeklong, P., Shirosaki, Y., Teerawatananond, T., Rabablert, J., & Boonyuen, S. (2021). Synthesis and cytotoxicity study of gold (III) porphyrin complexes and their derivative in breast cancer cells. Journal of Saudi Chemical Society, 25(12). https://doi.org/10.1016/j.jscs.2021.101366
Poupon-Fleuret, C., Steghens, J. P., & Bernengo, J. C. (1996). Luminol chemiluminescence-based porphyrin assays without hydrogen peroxide: A spectral study of mechanism and enhancement. Analyst, 121, 1539-1543. https://doi.org/10.1039/AN9962101539
Qin, F., Jia, S., Wan, F., Wu, S., Song, J., Liu, Y. (2003). Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catalytic Science and Technology, 10(3), 2761-2768. https://doi.org/10.1039/C3CY00268C
Shoji, E., & Freund, M. S. (2002). Potentiometric saccharide detection based on the pKa changes of poly (aniline boronic acid). Journal of the American Chemical Society, 124(42), 12486–12493. https://doi.org/10.1021/ja0267371
Tan, H., Ma, C., Gao, L., Li, Q., Song, Y., Xu, F., Wang, T., & Wang, L. (2014). Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry (Weinheim an der Bergstrasse, Germany), 20(49), 16377–16383. https://doi.org/10.1002/chem.201404960
Vlasova, I. I. (2018). Peroxidase activity of human hemoproteins: Keeping the fire under control. Molecules, 23(10), 1-27. https://doi:10.3390/molecules23102561
Wang, Q., Yang, Z., Zhang, X., Xiao, X., Chang, C. K., & Xu, B. (2007). A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angewandte Chemie (International ed. in English), 46(23), 4285–4289. https://doi.org/10.1002/anie.200700404
Wulff, G. (2002). Enzyme-like catalysis by molecularly imprinted polymers. Chemical Reviews, 102(1), 1–28. https://doi.org/10.1021/cr980039a
Wu, Z. S., Chen, L., Liu, J., Parvez, K., Liang, H., Shu, J., Sachdev, H., Graf, R., Feng, X., & Müllen, K. (2014). High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Advanced Materials (Deerfield Beach, Fla.), 26(9), 1450–1455. https://doi.org/10.1002/adma.201
