The Study of Peroxidase-mimic Activity of Tetaphenylporphyrin (TPP) and Metalloporphyrin (FeTOMPP)

Authors

  • Jittima Khorungkul Department of Biotechnology, Faculty of Science and Technology, Thammasat University
  • Pariya Na Nakorn Department of Biotechnology, Faculty of Science and Technology, Thammasat University
  • Supakorn Boonyuen Department of Chemistry, Faculty of Science and Technology, Thammasat University

Keywords:

Tetraphenylporphyrin, Metalloporphyrin, peroxidase, mimic activity oxidation

Abstract

Tetraphenylporphyrin--TPP and metalloporphyrin--FeTOMPP were used to test the peroxidase-like activity. The results showed that TPP and FeTOMPP were capable of oxidizing 3,3’,5,5’-tetramethybenzidine--
TMB, a colorless substrate of peroxidase, into blue in the presence of H2O2. The study of the optimum conditions of TPP and FeTOMPP found that the optimum conditions of TPP were similar to those of FeTOMPP, such as pH at 6 and temperature at 30 oC. The optimum amounts of TPP and FeTOMPP were different, as the optimum amounts of TPP and FeTOMPP were 50 g/ml and 35 g/ml, respectively. The comparative study of peroxidase-like activity between TPP and FeTOMPP indicated that FeTOMPP had higher efficiency in peroxidase mimics than that of TPP.

References

Alonso-Castro, A. J., Zapata-Morales, J. R., Hernández-Munive, A., Campos-Xolalpa, N., Pérez-Gutiérrez, S., & Pérez-González, C., (2015). Synthesis, antinociceptive and anti-inflammatory effects of porphyrins. Bioorganic & Medicinal Chemistry, 23(10), 2529-2537. https://doi.org/10.1016/j.bmc.2015.03.043

Chou, J., Kosal, M. E., Nalwa, H. S., Rakow, N. A., & Suslick, K. S. (2000). Applications of porphyrins and metalloporphyrins to materials chemistry. ChemInform, 6(41), 43-131. https://suslick.scs.illinois.edu/documents/porphmaterials.nofigs.pdf

Ellis, W. C., Tran, C. T., Denardo, M. A., Fischer, A., Ryabov, A. D., & Collins, T. J. (2009). Design of more powerful iron-TAML peroxidase enzyme mimics. Journal of the American Chemical Society, 131(50), 18052–18053. https://doi.org/10.1021/ja9086837

Feng, D., Gu, Z. Y., Li, J. R., Jiang, H. L., Wei, Z., & Zhou, H. C. (2012). Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angewandte Chemie (International ed. in English), 51(41), 10307–10310. https://doi.org/10.1002/anie.201204475

Filizola, M., & Loew, G. H. (2000). Role of protein environment in horseradish peroxidase compound I formation: Molecular dynamics simulations of horseradish peroxidase-HOOH complex. Journal of the American Chemical Society, 22(1), 18–25. https://doi.org/10.1021/ja992793z

Gouterman, M. (1961). Spectra of Porphyrins. Journal of Molecular Spectroscopy, 6, 138-163. https://doi.org/10.1016/0022-2852(61)90236-3

Gust, D., Moore, T. A., & Moore, A. L. (2001). Mimicking photosynthetic solar energy transduction. Accounts of Chemical Research, 34(1), 40–48. https://doi.org/10.1021/ar9801301

Hu, Q., Hu, W., Kong, J., & Zhang, X. (2015). Ultrasensitive electrochemical DNA biosensor by exploiting hematin as efficient biomimetic catalyst toward in situ metallization. Biosensors & bioelectronics, 63, 269–275. https://doi.org/10.1016/j.bios.2014.07.034

Josephy, H., Eling, T., & Mason, R. (1982). The horseradish peroxidase-catalyzed oxidation of 3,5,3’,5’-tetramethylbenziding. Free radical and charge transfer complex intermediates. Journal of Biological Chemistry, 257(7), 3669-3675. https://doi.org/10.1016/S0021-9258(18)34832-4

Kumar, U., Dorsey, J. G., Caruso, J. A., & Evans, E. H. (1994). Metalloporphyrin speciation by liquid chromatography and inductively coupled plasma-mass spectrometry. Journal of Chromatographic Science, 32(7), 282–285. https://doi.org/10.1093/chromsci/32.7.282

Ochsner M. (1997). Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology. B, Biology, 39(1), 1–18. https://doi.org/10.1016/s1011-1344(96)07428-3

Pavinatto, F.J., Gameiro, A. F., Hidalgo, A. A., Dinelli, L. R., Romualdo, L. L., Batista, A. A., Barbosa Neto, N. M., Ferreira, M., & Oliveira, O. N. (2008). Langmuir and Langmuir-Blodgett (LB) films of tetrapyridyl metalloporphyrins. Applied Surface Science, 254(18), 5946-5952. https://doi.org/10.1016/j.apsusc.2008.03.162

Phromasatit, T., Arpornmaeklong, P., Shirosaki, Y., Teerawatananond, T., Rabablert, J., & Boonyuen, S. (2021). Synthesis and cytotoxicity study of gold (III) porphyrin complexes and their derivative in breast cancer cells. Journal of Saudi Chemical Society, 25(12). https://doi.org/10.1016/j.jscs.2021.101366

Poupon-Fleuret, C., Steghens, J. P., & Bernengo, J. C. (1996). Luminol chemiluminescence-based porphyrin assays without hydrogen peroxide: A spectral study of mechanism and enhancement. Analyst, 121, 1539-1543. https://doi.org/10.1039/AN9962101539

Qin, F., Jia, S., Wan, F., Wu, S., Song, J., Liu, Y. (2003). Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catalytic Science and Technology, 10(3), 2761-2768. https://doi.org/10.1039/C3CY00268C

Shoji, E., & Freund, M. S. (2002). Potentiometric saccharide detection based on the pKa changes of poly (aniline boronic acid). Journal of the American Chemical Society, 124(42), 12486–12493. https://doi.org/10.1021/ja0267371

Tan, H., Ma, C., Gao, L., Li, Q., Song, Y., Xu, F., Wang, T., & Wang, L. (2014). Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry (Weinheim an der Bergstrasse, Germany), 20(49), 16377–16383. https://doi.org/10.1002/chem.201404960

Vlasova, I. I. (2018). Peroxidase activity of human hemoproteins: Keeping the fire under control. Molecules, 23(10), 1-27. https://doi:10.3390/molecules23102561

Wang, Q., Yang, Z., Zhang, X., Xiao, X., Chang, C. K., & Xu, B. (2007). A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angewandte Chemie (International ed. in English), 46(23), 4285–4289. https://doi.org/10.1002/anie.200700404

Wulff, G. (2002). Enzyme-like catalysis by molecularly imprinted polymers. Chemical Reviews, 102(1), 1–28. https://doi.org/10.1021/cr980039a

Wu, Z. S., Chen, L., Liu, J., Parvez, K., Liang, H., Shu, J., Sachdev, H., Graf, R., Feng, X., & Müllen, K. (2014). High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Advanced Materials (Deerfield Beach, Fla.), 26(9), 1450–1455. https://doi.org/10.1002/adma.201

Downloads

Published

2023-07-10

How to Cite

Khorungkul, J. ., Na Nakorn, P. ., & Boonyuen, S. . (2023). The Study of Peroxidase-mimic Activity of Tetaphenylporphyrin (TPP) and Metalloporphyrin (FeTOMPP). EAU Heritage Journal Science and Technology (Online), 17(2), 215–223. retrieved from https://he01.tci-thaijo.org/index.php/EAUHJSci/article/view/261961

Issue

Section

Research Articles