Contamination of Pharmaceutical Products in Aquatic Environment and Application of Laccase Enzyme Isolated from Mushroom for Their Removal
Keywords:
aquatic environment, contamination, laccase enzyme, pharmaceutical products, removal, mushroomAbstract
Pharmaceutical products--PMPs have been discovered in natural water all over the world as emerging environmental micropollutants. PMP contamination in the aquatic environment has been reported, with concentration levels ranging from nanograms to micrograms per liter. Many researchers have revealed that low PMP concentrations in the aquatic environment may have long-term consequences for organisms. The effluent from wastewater treatment plants was one of the major sources of PMP contamination. Traditional wastewater treatment technologies can only remove a certain number of PMPs. Thus, the efficacy of PMP removal in wastewater treatment has been improved using a variety of advanced technologies. Even so, most of these methods demand a lot of energy, operating costs, and chemical reagent additions. As a result, the use of laccase enzyme isolated from mushrooms to eliminate PMPs is an intriguing alternative due to its ability to remove a variety of PMPs. The advantages of Laccase enzymes include a variety of usage patterns, reusability, easier product separation, and environmental friendliness.
References
Ahmad, A. L., Mohd Harun, M. H. Z., Akmal Jasni, M. K., & Zaulkiflee, N. D. (2021). Removal of Ibuprofen at Low Concentration Using a Newly Formulated Emulsion Liquid Membrane. Membranes, 11(10), 740. https://doi.org/10.3390/membranes11100740
Almeida, Â., Silva, M. G., Soares, A. M., & Freitas, R. (2020). Concentrations levels and effects of 17alpha Ethinylestradiol in freshwater and marine waters and bivalves: A review. Environmental Research, 185, 109316. https://doi.org/10.1016/j.envres.2020.109316
Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera de Los Santos, M., Levin, L., Rojo‑Domínguez, A., Romero‑Martínez, D., Saparrat, M. C. N., Trujillo‑Roldán, M. A., & Valdez-Cruz, N. A. (2019). Laccases: Structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18(1), 1-33. https://doi.org/10.1186/s12934-019-1248-0
Ashrafi, S. D., Nasseri, S., Alimohammadi, M., Mahvi, A. H., & Faramarzi, M. A. (2020). Application of free and immobilized laccase for removal and detoxification of fluoroquinolones from aqueous solution. Global NEST Journal, 22(2), 240-249. https://doi.org/10.30955/gnj.002973
Aus der Beek, T., Weber, F. A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823-835. https://doi.org/10.1002/etc.3339
Bilal, M., & Iqbal, H. M. (2019). Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. Science of the Total Environment, 690, 447-459. https://doi.org/10.1016/j.scitotenv.2019.07.025
Biswas, P., & Vellanki, B. P. (2021). Occurrence of emerging contaminants in highly anthropogenically influenced river Yamuna in India. Science of The Total Environment, 782, 146741. https://doi.org/10.1016/j.scitotenv.2021.146741
Caban, M., & Stepnowski, P. (2021). How to decrease pharmaceuticals in the environment? A review. Environmental Chemistry Letters, 19(4), 3115-3138. https://doi.org/10.1007/s10311-021-01194-y
Chen, H., Zheng, W., Shen, X., Zhang, F., Zhou, X., Shen, J., & Lu, M. (2021). Occurrence, distribution, and ecological risk assessment of antibiotics in different environmental media in Anqing, Anhui province, China. International Journal of Environmental Research and Public Health, 18(15), 8112. https://doi.org/10.3390/ijerph18158112
Da Le, N., Hoang, A. Q., Hoang, T. T. H., Nguyen, T. A. H., Duong, T. T., Pham, T. M. H., Nguyen, T. D., Hoang, V. C., Phung, T. X. B., Le, H. T., Tran, C. S., Dang, T. H., Vu, N. T., Nguyen, T. N., & Le, T. P. Q. (2021). Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, profiles, source estimation, and risk assessment. Environmental Science and Pollution Research, 28(9), 10622-10632. https://doi.org/10.1007/s11356-020-11329-3
Du, B., Fan, G., Yu, W., Yang, S., Zhou, J., & Luo, J. (2020). Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. Environmental Pollution, 267, 115405. https://doi.org/10.1016/j.envpol.2020.115405
Eldridge, C. H., Milliken, A., Farmer, C., Wendland, N., Coward, L., Gregory, D. J., & Johnson, C. M. (2017). Efficient remediation of 17α-ethinylestradiol by Lentinula edodes (shiitake) laccase. Biocatalysis and Agricultural Biotechnology, 10, 64-68. doi: 10.1016/j.bcab.2017.02.004
Fekadu, S., Alemayehu, E., Dewil, R., & Van der Bruggen, B. (2019). Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Science of The Total Environment, 654, 324-337. https://doi.org/10.1016/j.scitotenv.2018.11.072
Gabet, A., Métivier, H., de Brauer, C., Mailhot, G., & Brigante, M. (2021). Hydrogen peroxide and persulfate activation using UVA-UVB radiation: Degradation of estrogenic compounds and application in sewage treatment plant waters. Journal of Hazardous Materials, 405, 124693. https://doi.org/10.1016/j.jhazmat.2020.124693
Garcia, L. F., Lacerda, M. F. A. R., Thomaz, D. V., de Souza Golveia, J. C., Pereira, M. D. G. C., de Souza Gil, E., Schimidt, F., & Santiago, M. F. (2019). Optimization of laccase–alginate–chitosan-based matrix toward 17α-ethinylestradiol removal. Preparative Biochemistry and Biotechnology, 49(4), 375-383. https://doi.org/10.1080/10826068.2019.1573195
Golveia, J. C., Santiago, M. F., Sales, P. T., Sartoratto, A., Ponezi, A. N., Thomaz, D. V., de Souza Gil, T., & F. Bara, M. T. (2018). Cupuaçu (Theobroma grandiflorum) residue and its potential application in the bioremediation of 17-Α-ethinylestradiol as a Pycnoporus sanguineus laccase inducer. Preparative Biochemistry and Biotechnology, 48(6), 541-548. https://doi.org/10.1080/10826068.2018.1466161
Kumar, V., & Sonkar, P. (2013). Laccases: sources and their environmental application. International Journal of Bioassays, 2(6), 909-911. https://www.ijbio.com/articles/laccases-sources-and-their-environmental-application.pdf
Kumhomkul, T. (2020). Contamination and effect of pharmaceutical products in environment. EAU Heritage Journal Science and Technology, 14(2), 40-50. (in Thai)
Lonappan, L., Rouissi, T., Laadila, M. A., Brar, S. K., Hernandez Galan, L., Verma, M., & Surampalli, R. Y. (2017). Agro-industrial-produced laccase for degradation of diclofenac and identification of transformation products. ACS Sustainable Chemistry & Engineering, 5(7), 5772-5781. https://doi.org/10.1021/acssuschemeng.7b00390
Lu, S., Lin, C., Lei, K., Xin, M., Wang, B., Ouyang, W., Liu, X., & He, M. (2021). Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants. Environmental Pollution, 287, 117588. https://doi.org/10.1016/j.envpol.2021.117588
Mathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miege, C., & Choubert, J. M. (2021). Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling. Chemosphere, 262, 127969. https://doi.org/10.1016/j.chemosphere.2020.127969
Maryskova, M., Rysova, M., Novotny, V., & Sevcu, A. (2019). Polyamide-laccase nanofiber membrane for degradation of endocrine-disrupting bisphenol A, 17α-ethinylestradiol, and triclosan. Polymers, 11(10), 1560. https://doi.org/10.3390/polym11101560
Mutiyar, P. K., & Mittal, A. K. (2014). Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environmental Monitoring and Assessment, 186(1), 541-557. https://doi.org/10.1007/s10661-013-3398-6
Ngo, T. H., Van, D. A., Tran, H. L., Nakada, N., Tanaka, H., & Huynh, T. H. (2021). Occurrence of pharmaceutical and personal care products in Cau River, Vietnam. Environmental Science and Pollution Research, 28(10), 12082-12091. https://doi.org/10.1007/s11356-020-09195-0
Ojoghoro, J. O., Scrimshaw, M. D., & Sumpter, J. P. (2021). Steroid hormones in the aquatic environment. Science of The Total Environment, 792, 148306. https://doi.org/10.1016/j.scitotenv.2021.148306
Pardo, I., Rodríguez-Escribano, D., Aza, P., De Salas, F., Martínez, A. T., & Camarero, S. (2018). A highly stable laccase obtained by swapping the second cupredoxin domain. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-34008-3
Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C. U., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510-3673. https://doi.org/10.1021/acs.chemrev.8b00299
Prajapati, H. V., & Minocheherhomji, F. P. (2018). Laccase-a wonder molecule: A review of its properties and applications. International Journal of Pure & Applied Bioscience, 6(1), 766-773. http://dx.doi.org/10.18782/2320-7051.6233
Prokić, D., Vukčević, M., Mitrović, A., Maletić, M., Kalijadis, A., Janković-Častvan, I., & Đurkić, T. (2022). Adsorption of estrone, 17β-estradiol, and 17α-ethinylestradiol from water onto modified multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon. Environmental Science and Pollution Research, 29(3), 4431-4445. https://doi.org/10.1007/s11356-021-15970-4
Snyder, S., Lue-Hing, C., Cotruvo, J., Drewes, J. E., Pleus, R. C., & Schlenk, D. (2010). Pharmaceuticals in the water environment. Retrieved from https://www.acs.org/content/dam/acsorg/policy/acsonthehill/briefings/pharmaceuticalsinwater/nacwa-paper.pdf
Sutaswiriya, N., Homklin, S., Kreetachat, T., Vaithanomsat, P., & Kreetachat, N. (2021). Monitoring estrogen and androgen residues from livestock farms in Phayao Lake, Thailand. Environmental Monitoring and Assessment, 193(12), 1-16. https://doi.org/10.1007/s10661-021-09607-9
Suzuki, S., Ogo, M., Takada, H., Seki, K., Mizukawa, K., Kadoya, A., Yokokawa, T., Sugimoto, Y., Sato-Takabe, Y., Boonla, C., Anomasiri, W., & Sukpanyatham, N. (2021). Contamination of antibiotics and sul and tet (M) genes in veterinary wastewater, river, and coastal sea in Thailand. Science of The Total Environment, 791, 148423. https://doi.org/10.1016/j.scitotenv.2021.148423
Tong, L., Qin, L., Guan, C., Wilson, M. E., Li, X., Cheng, D., Ma, J., Liu, H., & Gong, F. (2020). Antibiotic resistance gene profiling in response to antibiotic usage and environmental factors in the surface water and groundwater of Honghu Lake, China. Environmental Science and Pollution Research, 27(25), 31995-32005. https://doi.org/10.1007/s11356-020-09487-5
Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, 182, 620-640. https://doi.org/10.1016/j.jenvman.2016.07.049
Yu, J., Kang, Y., Yin, W., Fan, J., & Guo, Z. (2020). Removal of antibiotics from aqueous solutions by a carbon adsorbent derived from protein-waste-doped biomass. ACS Omega, 5(30), 19187-19193. https://doi.org/10.1021/acsomega.0c02568
Zdarta, J., Jesionowski, T., Pinelo, M., Meyer, A. S., Iqbal, H. M., Bilal, M., Nguyen, L. N., & Nghiem, L. D. (2022). Free and immobilized biocatalysts for removing micropollutants from water and wastewater: Recent progress and challenges. Bioresource Technology, 344, 126201. https://doi.org/10.1016/j.biortech.2021.126201
Zheng, Y., Lu, G. H., Shao, P. W., Piao, H. T., Gai, N., Rao, Z., Zhao, Q. S., & Yang, Y. L. (2020). Source tracking and risk assessment of pharmaceutical and personal care products in surface waters of Qingdao, China, with emphasis on influence of animal farming in rural areas. Archives of Environmental Contamination and Toxicology, 78(4), 579-588. https://doi.org/10.1007/s00244-020-00725-y
Zhu, F., Wang, S., Liu, Y., Wu, M., Wang, H., & Xu, G. (2020). Antibiotics in the surface water of Shanghai, China: screening, distribution, and indicator selecting. Environmental Science and Pollution Research, 28(8), 9836-9848. https://doi.org/10.1007/s11356-020-10967-x
