Omics in Entomology enter new Frontiers Against Hematophagous Arthropod Vectors


  • Frank-Peter Schelp Consultant


Primary health care, NCD, Epidemiological, Transition


The bacteria malaria, and filariasis and the dengue virus, and other mosquito-borne viruses influence the biology of the vector in various ways. The vector not only acquires the pathogen and serves as a vehicle to transmit it to the host but influences the virulence and progression of the pathogen. A better insight into the mosquito-borne virus life cycle will help develop new tools to fight the diseases. In the future, transgenic vectors and pathogen elimination will help disrupt the transmission of vector-borne diseases.


Download data is not yet available.


Ahantarig, A., Trinachartvanit, W., & Milne, J. R. (2008). Tick-borne pathogens and diseases of animals and humans in Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health, 39(6), 1015–1032.

Ahmad, R., Ali, W. N., Nor, Z. M., Ismail, Z., Hadi, A. A., Ibrahim, M. N., et al. (2011). Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia. Malaria journal, 10, 361.

Alphey, L. (2016). Can CRISPR-Cas9 gene drives curb malaria? Nature Biotechnology, 34(2), 149–150.

Barillas-Mury, C., Ribeiro, J. M. C., & Valenzuela, J. G. (2022). Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science, 377(6614), eabc2757.

Barletta, A. B. F., Saha, B., Trisnadi, N., Talyuli, O. A. C., Raddi, G., & Barillas-Mury, C. (2022). Hemocyte differentiation to the megacyte lineage enhances mosquito immunity against Plasmodium. eLife, 11, e81116.

Beckham, J. D., & Tyler, K. L. (2015). Arbovirus Infections. Continuum, 21(6 Neuroinfectious Disease), 1599–1611.

Busula, A. O., Bousema, T., Mweresa, C. K., Masiga, D., Logan, J. G., Sauerwein, R. W., et al. (2017). Gametocytemia and attractiveness of plasmodium falciparum-infected Kenyan children to anopheles gambiae mosquitoes. The Journal of Infectious Diseases, 216(3), 291–295.

Carrasco, D., Lefèvre, T., Moiroux, N., Pennetier, C., Chandre, F., & Cohuet, A. (2019). Behavioural adaptations of mosquito vectors to insecticide control. Current Opinion in Insect Science, 34, 48–54.

Cecílio, P., Cordeiro-da-Silva, A., & Oliveira, F. (2022). Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Communications Biology, 5(1), 305.

Centers for Disease Control and Prevention [CDC]. (2018). How can malaria cases and death be reduced? Retrieved from

Centers for Disease Control and Prevention [CDC]. (2020). Malaria lifecycle: Center for disease control and prevention. Retrieved from

de Vrieze, J. (2019). A shot of hope. Science, 366(6469), 1062–1065.

Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., et al. (2016). Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nature Immunology, 17(9), 1102–1108.

Ebrahim, S. A. M., Dweck, H. K. M., Weiss, B. L., & Carlson, J. R. (2023). A volatile sex attractant of tsetse flies. Science, 379(6633), eade1877.

Gendrin, M., Rodgers, F. H., Yerbanga, R. S., Ouédraogo, J. B., Basáñez, M. G., Cohuet, A., et al. (2015). Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nature communications, 6, 5921.

Greppi, C., Laursen, W. J., Budelli, G., Chang, E. C., Daniels, A. M., van Giesen, L., et al. (2020). Mosquito heat seeking is driven by an ancestral cooling receptor. Science, 367(6478), 681–684.

Horgan, R. P., & Kenny, L. C. (2011). ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics: The obstetrician & gynaecologist. The Obstetrician & Gynaecologist, 13(3), 189–195.

Imran, M., Ye, J., Saleemi, M. K., Shaheen, I., Zohaib, A., Chen, Z., et al. (2022). Epidemiological trends of mosquito-borne viral diseases in Pakistan. Animal Diseases, 2(1), 5.

Kamhawi, S., Ramalho-Ortigao, M., Pham, V. M., Kumar, S., Lawyer, P. G., Turco, S. J., et al. (2004). A role for insect galectins in parasite survival. Cell, 119(3), 329–341.

Kittayapong, P., Kaeothaisong, N. O., Ninphanomchai, S., & Limohpasmanee, W. (2018). Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasites & Vectors, 11(Suppl 2), 657.

Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J., & Barillas-Mury, C. (2010). A peroxidase/ dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science, 327(5973), 1644–1648.

Laurens, M. B. (2020). RTS,S/AS01 vaccine (Mosquirix™): An overview. Human Vaccines & Immunotherapeutics, 16(3), 480–489.

Lazzari, C. R. (2019). The thermal sense of blood-sucking insects: why physics matters. Current Opinion in Insect Science, 34, 112–116.

Lazzari, C. R. (2020). In the heat of the night. Science, 367(6478), 628–629.

Lazzari, C. R., & Cohuet, A. (2019). Editorial overview: Vectors and medical and veterinary entomology: an integrative view. Current Opinion in Insect Science, 34, 1-3.

Lehane, M. J. (1997). Peritrophic matrix structure and function. Annual Review of Entomology, 42, 525–550.

Leslie, M. (2022). Dengue and zika viruses turn people into mosquito bait. Science, 377(6602), 137.

Lidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., Messias-Reason, I. J., et al. (2019). Chagas disease: From discovery to a worldwide health problem. Frontiers in Public Health, 7, 166.

Liew, C., Soh, L. T., Chen, I., & Ng, L. C. (2021). Public sentiments towards the use of Wolbachia-Aedes technology in Singapore. BMC Public Health, 21(1), 1417.

Liu, W. L., Hsu, C. W., Chan, S. P., Yen, P. S., Su, M. P., Li, J. C., et al. (2021). Transgenic refractory Aedes aegypti lines are resistant to multiple serotypes of dengue virus. Scientific Reports, 11(1), 23865.

Madewell, Z. J. (2020). Arboviruses and their vectors. Southern Medical Journal, 113(10), 520–523.

Mafra-Neto, A., & Dekker, T. (2019). Novel odor-based strategies for integrated management of vectors of disease. Current Opinion in Insect Science, 34, 105–111.

Manning, J. E., Morens, D. M., Kamhawi, S., Valenzuela, J. G., & Memoli, M. (2018). Mosquito Saliva: The hope for a universal arbovirus vaccine? The Journal of Infectious Diseases, 218(1), 7–15.

Manning, J. E., Oliveira, F., Coutinho-Abreu, I. V., Herbert, S., Meneses, C., Kamhawi, S., et al. (2020). Safety and immunogenicity of a mosquito saliva peptide-based vaccine: A randomised, placebo-controlled, double-blind, phase 1 trial. Lancet, 395(10242), 1998–2007.

Nouzova, M., Clifton, M. E., & Noriega, F. G. (2019). Mosquito adaptations to hematophagia impact pathogen transmission. Current Opinion in Insect Science, 34, 21–26.

Okogun, G. R., Nwoke, B., Okere, A., Anosike, J., & Esekhegbe, A. (2003). Epidemiological implications of preferences of breeding sites of mosquito species in Midwestern Nigeria. Annals of Agricultural and Environmental Medicine, 10(2), 217–222.

Pal, U., Li, X., Wang, T., Montgomery, R. R., Ramamoorthi, N., Desilva, A. M., et al. (2004). TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell, 119(4), 457–468.

Rose, C., Casas-Sánchez, A., Dyer, N. A., Solórzano, C., Beckett, A. J., Middlehurst, B., et al. (2020). Trypanosoma brucei colonizes the tsetse gut via an immature peritrophic matrix in the proventriculus. Nature Microbiology, 5(7), 909–916.

Sajid, A., Matias, J., Arora, G., Kurokawa, C., DePonte, K., Tang, X., et al. (2021). mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Science Translational Medicine, 13(620), eabj9827.

Sicard, M., Bonneau, M., & Weill, M. (2019). Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. Current Opinion in Insect Science, 34, 12–20.

Sokol, J. (2023). How the yellow fever mosquito found its first human victim. Science, 379(6639), 1281–1282.

Stein, R. (2019). Scientists release controversal genetically modified mosquitoes in high-security lkab: NPR. Retrieved from

Vinauger, C. (2019). Vector cognition and neurobiology. Current Opinion in Insect Science, 34, 68–72.

Waitayakul, A., Somsri, S., Sattabongkot, J., Looareesuwan, S., Cui, L., & Udomsangpetch, R. (2006). Natural human humoral response to salivary gland proteins of Anopheles mosquitoes in Thailand. Acta Tropica, 98(1), 66–73.

Weaver, S. C., & Barrett, A. D. (2004). Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Reviews: Microbiology, 2(10), 789–801.

Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews: Microbiology, 6(10), 741–751.

Yakob, L., Alphey, L., & Bonsall, M. B. (2008). Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. Journal of Applied Ecology, 45(4), 1258–1265.

Yu, X., Zhu, Y., Xiao, X., Wang, P., & Cheng, G. (2019). Progress towards understanding the mosquito-borne virus life cycle. Trends in Parasitology, 35(12), 1009–1017.

Zhang, H., Zhu, Y., Liu, Z., Peng, Y., Peng, W., Tong, L., et al. (2022). A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell, S0092-8674(22), 00641-9.