Development of Nasopharyngeal Secretion Collection Tool
Main Article Content
Abstract
Objective: To develop a device for collecting nasopharyngeal secretions and to test its effectiveness in laboratory. Methods: This research and development created prototype tool for collecting nasopharyngeal secretions through stakeholder brainstorming, and tool design and fabrication. Subsequently, the prototype was tested in laboratory for its efficacy and safety using a medical manikin model. Result: The developed apparatus was suitable for collecting nasopharyngeal secretions because it allowed access to nasopharynx, provided clear visualization of where the sample should be taken, and used suction with low pressure rather than swabbing. The instrument was tested for 1,000 times and was able to reach the nasopharynx region without touching the surrounding tissues. The apparatus had a 96.09% efficacy index with no evidence of apparatus penetration to surrounding area. Conclusion: Laboratory testing of the developed prototype is promising. The prototype could be further tested for its effectiveness and safety.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ผลการวิจัยและความคิดเห็นที่ปรากฏในบทความถือเป็นความคิดเห็นและอยู่ในความรับผิดชอบของผู้นิพนธ์ มิใช่ความเห็นหรือความรับผิดชอบของกองบรรณาธิการ หรือคณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ทั้งนี้ไม่รวมความผิดพลาดอันเกิดจากการพิมพ์ บทความที่ได้รับการเผยแพร่โดยวารสารเภสัชกรรมไทยถือเป็นสิทธิ์ของวารสารฯ
References
Harr KE. Sample collection. Vet Clin North Am Exot Anim Pract. 2018;21:579-92.
Massey CJ, Diaz Del Valle F, Abuzeid WM, Levy JM, Mueller S, et al. Sample collection for laboratory-based study of the nasal airway and sinuses: a research compendium. Int Forum Allergy Rhinol. 2020;10(3):303-13.
Marty FM, Chen K, Verrill KA. How to obtain a nasopharyngeal swab specimen. N Engl J Med. 2020;382:e76.
Piras A, Rizzo D, Longoni E, Turra N, Urru S, Saba PP, et al. Nasopharyngeal swab collection in the suspicion of Covid-19. Am J Otolaryngol. 2020;41:102551.
Mawaddah A, Gendeh HS, Lum SG, Marina MB. Upper respiratory tract sampling in COVID-19. Malays J Pathol. 2020;42:23-35.
Zitek T. The Appropriate use of testing for COVID-19. West J Emerg Med. 2020;21:470-2.
Cheng MP, Papenburg J, Desjardins M, Kanjilal S, Quach C, Libman M, et al. Diagnostic testing for severe acute respiratory syndrome-related coronavirus 2: A narrative review. Ann Intern Med. 2020;172:726-34.
da Silva SJR, Silva CTAD, Guarines KM, Mendes RPG, Pardee K, Kohl A, et al. Clinical and laboratory diagnosis of SARS-CoV-2, the virus causing COVID-19. ACS Infect Dis. 2020;6:2319-36.
Chaimayo C, Kaewnaphan B, Tanlieng N, Athipanyasilp N, Sirijatuphat R, Chayakulkeeree M, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol J. 2020;17:177.
Mak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol. 2020;129:104500.
Department of Medical Sciences, Ministry of Public Health. Self-test antigen test kit (ATK) for the public. [cited 2021 Nov 3]. Available from: https://www3.dmsc.moph.go.th/post-view/1243
List of COVID-19 rapid test antigen or antigen test kits (COVID-19 antigen test self-test kits) that are permitted to be manufactured/imported from the food and drug administration. [cited 2021 Nov 3]. Available from: https://www.fda.moph.go.th/sites/Medical/Shared%20Documents/%E0%B8%82%E0%B9%89%E0%B8%AD%E0%B8%A1%E0%B8%B9%E0%B8%A5%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%8A%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%8A%E0%B8%B8%E0%B8%94%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%88%E0%B9%81%E0%B8%A5%E0%B8%B0%E0%B8%99%E0%B9%89%E0%B8%B3%E0%B8%A2%E0%B8%B2%20COVID-19%20Home%20use.pdf
Yamayoshi S, Sakai-Tagawa Y, Koga M, Akasaka O, Nakachi I, Koh H, et al. Comparison of rapid antigen tests for COVID-19. Viruses. 2020;12:1420.
Zhen W, Smith E, Manji R, Schron D, Berry GJ. Clinical evaluation of three sample-to-answer platforms for detection of SARS-CoV-2. J Clin Microbiol. 2020;58:e00783-20.
Procop GW, Shrestha NK, Vogel S, Van Sickle K, Harrington S, Rhoads DD, et al. A direct comparison of enhanced saliva to nasopharyngeal swab for the detection of SARS-CoV-2 in symptomatic patients. J Clin Microbiol. 2020;58:e01946-20.
Klein JAF, Krüger LJ, Tobian F, Gaeddert M, Lainati F, Schnitzler P, et al. Study Team. Head-to-head performance comparison of self-collected nasal versus professional-collected nasopharyngeal swab for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. Med Microbiol Immunol. 2021;210:181-6.
Dinnes J, Deeks JJ, Adriano A, Berhane S, Davenport C, Dittrich S, et al. Cochrane COVID-19 diagnostic test accuracy group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2020;8:CD013705.
Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. Cochrane COVID-19 diagnostic test accuracy group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2021;3:CD013705.
Zawolkow G. The Internet of Things and keeping samples safe. MLO Med Lab Obs. 2015;47:45.
Singh RP, Javaid M, Haleem A, Suman R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes Metab Syndr. 2020;14:521-4.