Hydroxyapatite Formation on Zirconium Dioxide Thin Film Coated on Stainless Steel
Keywords:
zirconium dioxide thin film, sputtering, hydroxyapatiteAbstract
In this research, zirconium dioxide thin film was coated on stainless steel by using DC unbalanced magnetron sputtering at the different Ar:O2 flowrate ratios of 1:2, 1:4 and 0.5:4. The formation of hydroxyapatite was tested by soaking zirconium dioxide thin film in simulated body fluid for 7 days. Then, the characteristics of zirconium dioxide thin film and formed hydroxyapatite were investigated by following techniques: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy--EDX and X-Ray Diffraction--XRD. The results show that the crystallography of zirconium dioxide thin film was monoclinic and tetragonal phase. The increase in oxygen ratio caused the low crystallinity and large crystal size of zirconium dioxide. After soaking in simulate body fluid, zirconium dioxide thin film with the smallest crystal size prepared by using 1:2 Ar:O2 flowrate ratio was considered to be the favorable condition for hydroxyapatite formation owing to high surface area and nucleus formation site. The Ca/P ratio was closed to theoretical value which was the most complete one among the others.
References
Balestra, R. M., Ribeiro, A. A., de Oliveira, J. C., Cavaleiro, A., & Oliveira, M. V. (2014). Titanium substrate surfaces coated with hydroxyapatite by magnetron sputtering. Materials Science Forum, 798–799, 472–477. https://doi.org/10.4028/www.scientific.net/msf.798-799.472
Bollino, F., Armenia, E., & Tranquillo, E. (2017). Zirconia/hydroxyapatite composites synthesized via sol-gel: Influence of hydroxyapatite content and heating on their biological properties. Materials (Basel, Switzerland), 10(7), 757. https://doi.org/10.3390/ma10070757
Cataoru, M., Bollino, F., Tranquillo, E. Tuffi, R., Dell’Era, A., & Vecchio Ciprioti, S. (2019). Morphological and thermal characterization of zirconia/hydroxyapatite composites prepared via Sol-gel for biomedical applications. Ceramics International, 45(2), 2835-2845. https://doi.org/10.1016/j.ceramint.2018.07.292.
Chaiyakun, S., Witit-anun, N., Sriyanaluk, S., & Tavorntira, J. (1998). A study of the proper state for material coating by sputtering method (Research report). Chon Buri: Burapha University. (in Thai)
Cullity, B. D. (1978). Elements of X-Ray diffraction. Phillippines: Addison-Wesley Publishing.
Hanawa, T. (2004). Metal ion release from metal implants. Materials Science and Engineering: C, 24(6-8), 745-752. https://doi.org/10.1016/j.msec.2004.08.018.
Kokubo, T. (1998). Apatite formation on surfaces of ceramics, metals, and polymers in body environment. Acta Materialia, 46(7), 2519-2527. https://doi.org/10.1016/S1359-6454(98)80036-0.
Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 27(15), 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017.
Komlev, V. S., & Barinov, S. M. (2006). Novel bioactive hydroxyapatite-base ceramic and gelatin-impregnated composites. In B. M. Caruta, (Ed.), Ceramics and Composite Materials: New Research (pp. 133-146). New York: Nova Science Publishers.
Likitwanichkool, S. (1998). Ceramics for medical profession. Retrieved from http://lib3.dss.go.th/fulltext/dss_j/2541_46_148_p3-6.pdf
Lim, K. F., Muchtar, A., Mustaffa, R., & Tan, C. Y. (2014). Synthesis and characterization of hydroxyapatite-zirconia composites for dental applications. Asian Journal of Scientific Research, 7(4), 609-615. doi: 10.3923/ajsr.2014.609.615
Lluch, A. V., Ferrer, G. G., & Pradas, M. M. (2009). Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid?. Colloids and surfaces. B, Biointerfaces, 70(2), 218–225. https://doi.org/10.1016/j.colsurfb.2008.12.027
Ma, C., Lapostolle, F., Briois, P., & Zhang, Q.Y. (2007). Effect of O2 gas partial pressure on structures and dielectric characteristics of RF sputtered ZrO2 thin films. Applied Surface Science, 253(21), 8718-8724. https://doi.org/10.1016/j.apsusc.2007.04.054.
Nagarajan, S., & Rajendran, N. (2009). Sol-gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications. Journal of Sol-Gel Science and Technology, 52, 188-196. https://doi.org/10.1007/s10971-009-2024-0
Ruksudjarit, A. (2008). Fabrication of dense hydroxyapatite nanomaterials for bone implant applications (Doctoral dissertation). Ching Mai University. Ching Mai. (in Thai)
Sabree, I. K., & Mahdi, O. S. (2018). Characterization of zirconia-hydroxyapatite nanocomposites for orthopedic and dental applications. International Journal of Engineering and Technology, 7(4.19), 926-930. doi: 10.14419/ijet.v7i4.19.28072
Thaveedeetrakul, A., Boonamnuayvitaya, V., & Witit-anun, N. (2012a). Apatite deposition on ZrO2 thin films by DC unbalanced magnetron sputtering. Advances in Materials Physics and Chemistry, 2(4), 45-48. doi: 10.4236/ampc.2012.24B013
Thaveedeetrakul, A. Witit-anun, N., & Boonamnuayvitaya, V. (2012b). The role of target-to-substrate distance on the DC magnetron sputtered zirconia thin film’s bioactivity. Applied Surface Science, 258(7), 2612-2619. https://doi.org/10.1016/j.apsusc.2011.10.104.
Thaveedeetrakul, A., Witit-anun, N., & Boonamnuayvitaya, V. (2013). Effect of sputtering power on in vitro bioactivity of zirconia thin films obtained by DC unbalanced magnetron sputtering. Journal of Chemical Engineering of Japan, 46(1), 79-86. doi: 10.1252/jcej.12we088
Uchida, M., Kim, H.‐M., Kokubo, T., Miyaji, F., & Nakamura, T. (2001), Bonelike apatite formation induced on Zirconia Gel in a simulated body fluid and Its modified solutions. Journal of the American Ceramic Society, 84, 2041-2044. https://doi.org/10.1111/j.1151-2916.2001.tb00955.x
Uchida, M., Kim, H.-M., Kokubo, T., Tanaka, K., & Nakamura, T. (2002a). Structural dependence of apatite formation on Zirconia Gels in a simulated body fluid. Journal of the Ceramic Society of Japan, 110(1284), 710-715. https://doi.org/10.2109/jcersj.110.710
Uchida, M., Kim, H. M., Miyaji, F., Kokubo, T., & Nakamura, T. (2002b). Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials, 23(1), 313-317. doi: 10.1016/s0142-9612(01)00110-7.
Ureña, J., Tsipas, S., Jiménez-Morales, A., Gordo, E., Detsch, R., Bocaaccini, A. R. (2018). In-vitro study of the bioactivity and cytotoxicity response of Ti surfaces modified by Nb and Mo diffusion treatments. Surface and Coatings Technology, 335, 148-158. https://doi.org/10.1016/j.surfcoat.2017.12.009.
Wikipedia, The free encyclopedia. (2020). Sputter deposition. Retrieved from https://en.wikipedia.org/wiki/Sputter_deposition.
Witit-anun, N., Kasemanankul, P., Chaiyakun, S., & Limsuwan, P. (2009). Structures and optical properties of TiO2 thin films deposited on unheated substrate by DC reactive magnetron sputtering. Kasetsart Journal (Natural Science), 43, 340-346. (in Thai)
Yan, Y., Han, Y., & Lu, C. (2008). The effect of chemical treatment on apatite-forming ability of the macroporous zirconia films formed by micro-arc oxidation. Applied Surface Science, 254(15), 4833-4839. https://doi.org/10.1016/j.apsusc.2008.01.117.
