การทบทวนอย่างเป็นระบบเกี่ยวกับระบาดวิทยาระดับโมเลกุลของวัณโรคที่กลับมาระบาดในประเทศไทย
Main Article Content
บทคัดย่อ
วัณโรค(Tuberculosis) ยังคงเป็นสาเหตุการเสียชีวิตอันดับต้น ๆ ทั่วโลก โดยในปี 2022 มีรายงานผู้ป่วยวัณโรคประมาณ 10 ล้านรายและเสียชีวิต 1.5 ล้านราย โดยในจำนวนนี้มีประมาณ 500,000 รายที่เป็นผู้ป่วยวัณโรคดื้อยาหลายขนาน (MDR-TB) ซึ่งส่งผลกระทบอย่างมากต่อการควบคุมวัณโรคและการแทรกแซงการแพร่เชื้อ ประเทศไทยติดอันดับ 1 ใน 30 ประเทศที่มีภาระวัณโรคสูง โดยมีอุบัติการณ์ 150 ต่อประชากร 100,000 คน และมีอุบัติการณ์ของ MDR-TB ประมาณ 1.7% ในผู้ป่วยรายใหม่และ 10% ในผู้ป่วยที่เคยได้รับการรักษามาก่อน ความหลากหลายทางพันธุกรรมของ Mycobacterium tuberculosis (MTB) ในประเทศไทยประกอบด้วยทั้งสายพันธุ์ปักกิ่งและสายพันธุ์ที่ไม่ใช่ปักกิ่ง โดยสายพันธุ์ปักกิ่งมีความเกี่ยวข้องกับ MDR-TB และวัณโรคที่ดื้อยาขั้นสูง (XDR-TB) การศึกษานี้มีวัตถุประสงค์เพื่อสำรวจการกลายพันธุ์ของยาชั้นแรกที่เกี่ยวข้องกับการดื้อยาในสายพันธุ์ปักกิ่ง และสรุปข้อมูลเกี่ยวกับการแพร่ระบาด โปรไฟล์การกลายพันธุ์ การกลายพันธุ์ใหม่ และผลกระทบต่อการจัดการวัณโรคตามพันธุกรรมของ MTB ข้อมูลระบาดวิทยาระดับโมเลกุลของ MDR-TB มีความสำคัญอย่างยิ่งต่อกลยุทธ์ด้านสาธารณสุข ช่วยในการติดตามการกระจายทางภูมิศาสตร์และการแพร่เชื้อของโคลน MTB ที่ดื้อต่อยา
การศึกษาครั้งนี้นี้ได้ทำการค้นคว้าเอกสารอย่างเป็นระบบโดยใช้ฐานข้อมูล เช่น PubMed, Scopus และ Web of Science เน้นการศึกษาเกี่ยวกับระบาดวิทยาระดับโมเลกุลของวัณโรคในประเทศไทยที่ตีพิมพ์ระหว่างปี 2000 ถึง 2023 ผลการทบทวนพบว่าสายพันธุ์ปักกิ่งมีการแพร่กระจายในประเทศไทยมากที่สุด มีความเกี่ยวข้องกับอัตราการแพร่เชื้อสูงและการดื้อยา รวมถึงพบการกลายพันธุ์เฉพาะ เช่น H526P, Q513P, และ H526C ในยีน rpoB การทำความเข้าใจเกี่ยวกับการกลายพันธุ์เหล่านี้และผลกระทบต่อการดื้อยามีความสำคัญต่อการพัฒนากลยุทธ์การควบคุมและการรักษาวัณโรคที่มีประสิทธิภาพในประเทศไทยและพื้นที่ที่มีภาระสูงอื่น ๆ
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่พิมพ์ในวารสารสถาบันป้องกันควบคุมโรคเขตเมือง ถือว่าเป็นผลงานวิชาการ งานวิจัยและวิเคราะห์ ตลอดจนเป็นความเห็นส่วนตัวของผู้เขียนเอง ไม่ใช่ความเห็นของสถาบันป้องกันควบคุมโรคเขตเมือง หรือคณะบรรณาธิการแต่ประการใด ผู้เขียนจำต้องรับผิดชอบต่อบทความของตน
เอกสารอ้างอิง
World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization; 2021.
Guo S, Chongsuvivatwong V, Lei S. Comparison on Major Gene Mutations Related to Rifampicin and Isoniazid Resistance between Beijing and Non-Beijing Strains of Mycobacterium tuberculosis: A Systematic Review and Bayesian Meta-Analysis. Genes. 2022 Oct 13;13(10):1-17.
Thawornwattana Y, Mahasirimongkol S, Yanai H, Maung HMW, Cui Z, Chongsuvivatwong V, Palittapongarnpim P. Revised nomenclature and SNP barcode for Mycobacterium tuberculosis lineage 2. Microb Genom. 2021 Nov;7(11):1-14.
Saikaew S, Thongprachum A, Pongsararuk R, Thanraka A, Kunyanone N, Chaiyasirinroje B, et al. Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand. Antibiotics (Basel). 2022 Dec 1;11(12):1-15.
Krittanan P, Srimanote P, Thawornwan U, Chaiprasert A, Tapchaisri P, Tongtawe P. Spoligotype-based population structure and isoniazid-resistance gene mutation of Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist. 2022 Sep;30:319-25.
Saiboonjan B, Roytrakul S, Sangka A, Lulitanond V, Faksri K , Namwat W. Proteomic analysis of drug-susceptible and multidrug-resistant nonreplicating Beijing strains of Mycobacterium tuberculosis cultured in vitro. Biochemistry and Biophysics Reports. 2021 Jul; 26:1-5.
Disratthakit A, Thawong P, Piboonsiri P, Mahasirimongkol S. Molecular Epidemiological Information System to Support Management of Multidrug-Resistant Tuberculosis in Thailand: Abstract. Online J Public Health Inform. 2020 Jun 26;12(1):1-11.
Nonghanphithak D, Chaiprasert A, Smithtikarn S, Kamolwat P, Pungrassami P, Chongsuvivatwong V, et al. Clusters of Drug-Resistant Mycobacterium tuberculosis Detected by Whole-Genome Sequence Analysis of Nationwide Sample, Thailand, 2014-2017. Emerg Infect Dis. 2021 Mar;27(3):813-22.
Rudeeaneksin J, Klayut W, Srisungngam S, Bunchoo S, Toonkomdang S, Wongchai T, et al. Putative extensive and pre-extensive drug resistant-tuberculosis associated with unusual genotypes on the Thailand-Myanmar border. Rev Inst Med Trop Sao Paulo. 2021 Dec 6;63:1-6.
Karaipoom P, Saengsawang P, Bromnavej A, Sangsong S, Waseewiwat P, Bunsanong B, et al. Occurrence of multidrug-resistant Mycobacterium tuberculosis in upper Southern Thailand. Vet World. 2024 Jun;17(6):1405-12.
Nalunjogi J, Mucching-Toscano S, Sibomana JP, Centis R, D'Ambrosio L, Alffenaar JW, et al. Impact of COVID-19 on diagnosis of tuberculosis, multidrug-resistant tuberculosis, and on mortality in 11 countries in Europe, Northern America, and Australia. A Global Tuberculosis Network study. Int J Infect Dis. 2023 May;130 Suppl 1:S25-S29.
Rudeeaneksin J, Phetsuksiri B, Nakajima C, Bunchoo S, Suthum K, Tipkrua N, et al. Drug-resistant Mycobacterium tuberculosis and its genotypes isolated from an outbreak in western Thailand. Trans R Soc Trop Med Hyg. 2021 Aug 2;115(8):886-95.
Guerra-Assunção JA, Crampin AC, Houben RM, Mzembe T, Mallard K, Coll F, et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife. 2015 Mar 3;4:1-17.
Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997 Apr;35(4):907-14.
Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006 Mar 6;6:1-17.
Rolo M, González-Blanco B, Reyes CA, Rosillo N, López-Roa P. Epidemiology and factors associated with Extra-pulmonary tuberculosis in a Low-prevalence area. J Clin Tuberc Other Mycobact Dis. 2023 May 12;32:1-5.
Ramaswamy SV, Reich R, Dou SJ, Jasperse L, Pan X, Wanger A, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003 Apr;47(4):1241-50.
Hazra D, Lam C, Chawla K, Sintchenko V, Dhyani VS, Venkatesh BT. Impact of Whole-Genome Sequencing of Mycobacterium tuberculosis on Treatment Outcomes for MDR-TB/XDR-TB: A Systematic Review. Pharmaceutics. 2023 Dec 15;15(12):1-13.
Callum J, Nguyen PTB, Martinez E, Nguyen VT, Garden F, Nguyen NV, et al. Prevalence and genetic basis of first-line drug resistance of Mycobacterium tuberculosis in Ca Mau, Vietnam. ERJ Open Res. 2022 Oct 24;8(4):1-9.
Regmi SM, Chaiprasert A, Kulawonganunchai S, Tongsima S, Coker OO, Prammananan T, et al. Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand. Mol Genet Genomics. 2015 Oct;290(5):1933-41.
WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020.
Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet. 2011 May;43(5):482-6.
Müller B, Borrell S, Rose G, Gagneux S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet. 2013 Mar;29(3):160-9.
Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Medicine. 2015 May 27;7(51):1-10.
Boonaiam S, Chaiprasert A, Prammananan T, Leechawengwongs M. Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand. Clin Microbiol Infect. 2010 Apr;16(4):396-9.
Kalokhe AS, Shafiq M, Lee JC, Ray SM, Wang YF, Metchock B, et al. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing. Am J Med Sci. 2013 Feb;345(2):143-8.
Ramaswamy SV, Reich R, Dou SJ, Jasperse L, Pan X, Wanger A, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003 Apr;47(4):1241-50.
Rudeeaneksin J, Phetsuksiri B, Nakajima C, Fukushima Y, Suthachai W, Tipkrua N, et al. Molecular Characterization of Mutations in Isoniazid- and Rifampicin-Resistant Mycobacterium tuberculosis Isolated in Thailand. Jpn J Infect Dis. 2023 Jan 24;76(1):39-45.
Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E, Santacroce L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics. 2022; 11(10):1-15.
Waller NJE, Cheung CY, Cook GM, McNeil MB. The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis. Nature Communications. 2023 Mar 18;14.1-15.
Li Y, Cao X, Li S, Wang H, Wei J, Liu P, et al. Characterization of Mycobacterium tuberculosis isolates from Hebei, China: genotypes and drug susceptibility phenotypes. BMC Infectious Diseases. 2016 Mar 3;16:1-11.
วลัยรัตน์ ไชยฟู. สรุปรายงาน การเฝ้าระวังโรค ประจำปี 2561 Annual Epidemiological Surveillance Report 201. กรุงเทพฯ; ห้างหุ้นส่วนจำกัด: 2561.
MIRU-VNTRplus [Internet]. Münster: MIRU-VNTRplus; c2024. Mycobacterium tuberculosis complex (MTBC). 2024. [cited 2024 Aug 22]; [about 1 p.]. Available from: https://www.miru-vntrplus.org/MIRU/index.faces