Application of the ARIMA Model for Forecasting Tuberculosis Incidents in Thailand, Neighboring Countries
Main Article Content
Abstract
Tuberculosis is still a major issue for the Thai public health community. Tuberculosis control focuses on finding patients in the early detection and treating them as soon as possible. Forecasting the number of tuberculosis patients in Thailand, neighboring countries, and China is important information in the management, prevention, and control of tuberculosis. The ARIMA model of Box and Jenkins method has been used in China, Malaysia, and Kenya. The objective of this research is to forecast the number of tuberculosis cases in China, Cambodia, Myanmar, Laos, Malaysia, and Thailand with the ARIMA model using the number of incidents from 2020 to 2023 from the World Health Organization database. The results from the monthly forecast values of the model that best fit the data ARIMA(p,d,q)(P,D,Q)m, when considered on an annual basis, showed that in 2024, the percentage of the number of patients increased from 2023 in China and Malaysia, at +8.15 and +1.11, respectively. Countries that decreased were Cambodia, Laos, and Thailand at -1.81, -9.22, and -2.30, respectively. As for Myanmar, in 2023 it increased from 2022 to +23.33, and the incident rate per 100,000 people appeared as follows: Myanmar 252.28, Cambodia 166.23, Thailand 106.72, Laos 105.49, Malaysia 76.02, and China 33.40.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่พิมพ์ในวารสารสถาบันป้องกันควบคุมโรคเขตเมือง ถือว่าเป็นผลงานวิชาการ งานวิจัยและวิเคราะห์ ตลอดจนเป็นความเห็นส่วนตัวของผู้เขียนเอง ไม่ใช่ความเห็นของสถาบันป้องกันควบคุมโรคเขตเมือง หรือคณะบรรณาธิการแต่ประการใด ผู้เขียนจำต้องรับผิดชอบต่อบทความของตน
References
World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization; 2023.
World Health Organization [Internet]. Geneva: World Health Organization; c2024. Global Tuberculosis Programme; 2024 [cited 2024 Mar 18]; [about 1 screen]. Available from: https://www.who.int/teams/global-tuberculosis-programme/data
The World Bank Group [Internet]. Washington: The World Bank Group; c2024. DataBank World Development Indicators; 2024 [cited 2024 Mar 18]; [about 1 screen]. Available from: https://databank.worldbank.org/reports.aspx?source=2&series=SH.TBS.INCD&count%20ry=CHN
สำนักงานปลัดกระทรวงสาธารณสุข, กองยุทธศาสตร์และแผนงาน. สรุปรายงานการป่วย ปี พ.ศ. 2565. นนทบุรี: กองยุทธศาสตร์และแผนงาน; 2565.
Ab Rashid MA, Ahmad Zaki R, Wan Mahiyuddin WR, Yahya A. Forecasting New Tuberculosis Cases in Malaysia: A Time-Series Study Using the Autoregressive Integrated Moving Average (ARIMA) Model. Cureus. 2023 Sep 4;15(9):1-7.
Siamba S, Otieno A, Koech J. Application of ARIMA, and hybrid ARIMA Models in predicting and forecasting tuberculosis incidences among children in Homa Bay and Turkana Counties, Kenya. PLOS Digit Health. 2023 Feb 1;2(2):1-19.
Chen S, Wang X, Zhao J, Zhang Y, Kan X. Application of the ARIMA Model in Forecasting the Incidence of Tuberculosis in Anhui During COVID-19 Pandemic from 2021 to 2022. Infect Drug Resist. 2022 Jul 4;15:3503-12.
โรงพยาบาลศิริราช ปิยมหาการุณย์ [อินเทอร์เน็ต]. กรุงเทพฯ: โรงพยาบาลศิริราช ปิยมหาการุณย์; c2021. กินยาครบวัณโรคหายขาด; 2564 [เข้าถึงเมื่อ 12 เมษายน 2567]; [ประมาณ 3 น.]. เข้าถึงได้จาก: https://www.siphhospital.com/th/news/article/share/tuberculosis
ศรีประพา เนตรนิยม, บรรณาธิการ. การคัดกรองเพื่อค้นหาวัณโรคและวัณโรคดื้อยา Systematic screening for active TB and drug-resistant TB. พิมพ์ครั้งที่ 2. กรุงเทพฯ: อักษรกราฟฟิคแอนด์ดีไซน์; 2561.
Moghaddam HT, Moghadam Z, Khademi G, Bahreini A, Saeidi M. Tuberculosis: Past, Present and Future. International Journal of Pediatrics. 2016; 4(1):1247-58.
Makridakis S, Wheelwright SC, Hyndman RJ. Forecasting methods and applications. 3rd ed. New Delhi : Wiley India Private Limited; 2008.
Hyndman RJ, Athanasopoulos, G. Forecasting: principles and practice. 2nd ed. Melbourne: OTexts; 2018.
Hyndman RJ, Kostenko AV. Minimum sample size requirements for seasonal forecasting models. Foresight. 2007;6(Spring):12-15.
Hyndman RJ, Khandakar Y. Automatic time series forecasting: the forecast package for R. Journal of Statistical Software. 2008;27(3):1–22.
Lewis CD. Industrial and business forecasting methods. London: Butterworth Scientific; 2023.
มหาวิทยาลัยมหิดลศูนย์ส่งเสริมจริยธรรมการวิจัย [อินเทอร์เน็ต]. กรุงเทพฯ: c2019. ศูนย์ส่งเสริมจริยธรรมการวิจัย มหาวิทยาลัยมหิดล; 2562. คณะกรรมการจริยธรรมการวิจัยในคนชุดกลางของ มหาวิทยาลัยมหิดล [เข้าถึงเมื่อ 15 มกราคม 2567]; [ประมาณ 1 น.]. เข้าถึงได้จาก: https://sp.mahidol.ac.th/th/ethics-human/
Bai W, Ameyaw EK. Global, regional and national trends in tuberculosis incidence and main risk factors: a study using data from 2000 to 2021. BMC Public Health. 2024 Jan 2;24(1):1-14.
Worldometers [Internet]. Geneva: Worldometers; c2024. Countries in the world by population (2024) updated; 2024 [cited 2024 Mar 18]; [about 16 screens]. Available from: https://www.worldometers.info/world-population/population-by-country/