Prevalence of Computer Vision Syndrome and Risk Factors for Dry Eye among Digital Arts Students
Main Article Content
Abstract
Background: Prolonged use of digital devices can lead to computer vision syndrome (CVS), which is commonly reported among university students, particularly those requiring continuous computer use such as digital arts students. CVS may adversely affect health, yet evidence in the Thai context remains limited.
Objective: To determine the prevalence of CVS, dry eye, and musculoskeletal symptoms, as well as to identify risk factors for dry eye among digital arts students.
Materials and Methods: This cross−sectional survey was conducted between June and October 2023 among undergraduate students of the Faculty of Digital Arts, Rangsit University. Data on digital device usage were collected. CVS was assessed using the CVS questionnaire, dry eye symptoms using the Ocular Surface Disease Index, and musculoskeletal symptoms using a structured assessment. Descriptive statistics were applied, Chi−square tests were used to compare groups with and without dry eye, and logistic regression was employed to analyze risk factors.
Results: A total of 233 students were included (mean age: 20.3±1.6 years), the majority being female (60.5%). The average screen time was 10.5±3.9 hours/day. The most common musculoskeletal symptoms were neck, shoulder, and back pain (82.8%) and headache (51.9%). The most frequent ocular symptom was eye strain (66.1%). The prevalence of CVS was 50.6% (118 students), with mild, moderate, and severe cases accounting for 36.5%, 10.7%, and 3.4%, respectively. The prevalence of dry eye was 46.4% (108 students), and was significantly higher among females and those perceiving poor screen sharpness compared with their counterparts (75.9% vs. 47.2%, p<0.001; 32.4% vs. 11.2%, p<0.001). Risk factors for dry eye included female sex (OR 3.53, 95% CI 2.01−6.20, p<0.001) and the perception of poor screen sharpness (OR 3.80, 95% CI 1.91−7.55, p<0.001).
Conclusion: Among digital arts students, the prevalence of CVS and dry eye were 50.6% and 46.4%, respectively. Female sex and perception of poor screen sharpness were identified as significant risk factors for dry eye.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ส่งมาลงพิมพ์ต้องไม่เคยพิมพ์หรือกำลังได้รับการพิจารณาตีพิมพ์ในวารสารอื่น เนื้อหาในบทความต้องเป็นผลงานของผู้นิพนธ์เอง ไม่ได้ลอกเลียนหรือตัดทอนจากบทความอื่น โดยไม่ได้รับอนุญาตหรือไม่ได้อ้างอิงอย่างเหมาะสม การแก้ไขหรือให้ข้อมูลเพิ่มเติมแก่กองบรรณาธิการ จะต้องเสร็จสิ้นเป็นที่เรียบร้อยก่อนจะได้รับพิจารณาตีพิมพ์ และบทความที่ตีพิมพ์แล้วเป็นสมบัติ ของลำปางเวชสาร
References
We Are Social, Hootsuite. Digital 2023: Global overview report [Internet]. 2023 [cited 2023 Oct 15]. Available from: https://datareportal.com/reports/digital−2023−global−overview−report
Rosenfield M. Computer vision syndrome (or digital eye strain). Optom Vis Sci. 2011;88(5):E1−2.
ศศิธร ชิดนาย. กลุ่มอาการจอภาพคอมพิวเตอร์หรือความล้าของสายตา. ราชาวดีสาร วิทยาลัยพยาบาลบรมราชนนี สุรินทร์. 2562;7(2):47−58.
Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018;3(1):e000146.
Yazdanirad S, Khademi S, Dehghani M, Zare A. The prevalence of musculoskeletal disorders among university students: a systematic review and meta−analysis. J Musculoskelet Res. 2021;24(04):2150024.
นรากร พลหาญ, สมสมร เรืองวรบูรณ์, โกมล บุญแก้ว, อนุพงษ์ ศรีวิรัตน์. กลุ่มอาการที่เกิดต่อร่างกายจากการใช้คอมพิวเตอร์ในการปฏิบัติงานของบุคลากรสายสนับสนุนมหาวิทยาลัยนครพนม. วารสาร มศว. (สาขาวิทยาศาสตร์และเทคโนโลยี). 2558;6(12):26−38.
Ranasinghe P, Wathurapatha WS, Perera YS, Lamabadusuriya DA, Kulatunga S, Jayawardana N, et al. Computer vision syndrome among computer office workers in a developing country: an evaluation of prevalence and risk factors. BMC Res Notes. 2016;9:150.
Abudawood GA, Ashi HM, Almarzouki NK. Computer vision syndrome among undergraduate medical students in King Abdulaziz University, Jeddah, Saudi Arabia. J Ophthalmol. 2020:8148316.
Madu C, Ovenseri−Ogbomo GO, Asiamah G. Prevalence and risk factors for computer vision syndrome among university students in Ghana. Heliyon. 2022;8(10): e10986.
Al−Mohtaseb Z, Schachter S, Shen Lee B, Garlich J, Trattler W. The relationship between dry eye disease and digital screen use. Clin Ophthalmol. 2021;15:3811−20.
Uchino M, Schaumberg DA, Dogru M, Uchino Y, Fukagawa K, Shimmura S, et al. Prevalence of dry eye disease among Japanese visual display terminal users. Ophthalmology. 2008;115(11):1982−8.
Kim J, Hwang Y, Kang S, Kim M, Kim E, Kim H, et al. Association between smartphone use and dry eye disease in university students. J Ophthalmic Vis Res. 2016;11(1):63−7.
Thomée S, Härenstam A, Hagberg M. Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults − a prospective cohort study. BMC Public Health. 2011;11:66.
Talens−Estarelles C, Cerviño A, García−Lázaro S, Fogelton A, Sheppard A, Wolffsohn JS. The effects of the 20-20-20 rule on computer−related eye symptoms and accommodation. Cont Lens Anterior Eye. 2023;46(3):101833.
Jaschinski W. The proximity−fixation−disparity curve and the preferred viewing distance at a visual display. Vision Res. 2002;42(8):1035−47.
Labbafinejad Y, Aghilinejad M, Sadeghi Z. Association between duration of daily visual display terminal work and sleep disorders among statistics center staff in Iran. J Occup Health. 2018;60(3):253−8.
Cantó−Sancho N, Porru S, Casati S, Ronda E, Seguí−Crespo M, Carta A. Prevalence and risk factors of computer vision syndrome—assessed in office workers by a validated questionnaire. PeerJ. 2023;11:e14937.
Seguí M, Cabrero−García J, Crespo A, Verdú J, Ronda E. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace. J Clin Epidemiol. 2015;68(6):662−73.
Cochran WG. Sampling Techniques. 3rd ed. New York: John Wiley & Sons; 1977.
Finan PH, Goodin BR, Smith MT. The association of sleep and pain: an update and a path forward. J Pain. 2013;14(12):1539−52.
Sullivan DA, Rocha EM, Aragona P, Clayton JA, Ding J, Golebiowski B, et al. TFOS DEWS II sex, gender, and hormones report. Ocul Surf. 2017;15(3):284−333.
Lawrenson JG, Hull CC, Downie LE. The effect of blue−light blocking spectacle lenses on visual performance, macular health and the sleep−wake cycle: a systematic review of the literature. Ophthalmic Physiol Opt. 2017;37(6):644−54.
Logaraj M, Madhupriya V, Hegde S, D’Souza R. A study on the effect of a comprehensive health education program on computer vision syndrome among college students in Bangalore. J Family Med Prim Care. 2014;3(2):121−5.