การเพิ่มประสิทธิภาพด้านอากาศพลศาสตร์เพื่อลดผลกระทบต่อสิ่งแวดล้อม
คำสำคัญ:
อากาศพลศาสตร์, การบินที่ยั่งยืน, ประสิทธิภาพการบิน, ผลกระทบสิ่งแวดล้อมบทคัดย่อ
อุตสาหกรรมการบินเป็นอุตสาหกรรมที่สำคัญในการขับเคลื่อนเศรษฐกิจโลก แต่ปัจจุบันยังต้องเผชิญกับปัญหาด้านสิ่งแวดล้อมจากการปล่อยก๊าซเรือนกระจก บทความนี้นำเสนอการวิเคราะห์เกี่ยวกับการพัฒนาอากาศพลศาสตร์ในอุตสาหกรรมการบิน โดยมุ่งเน้นการศึกษาการเพิ่มประสิทธิภาพด้านอากาศพลศาสตร์เพื่อลดผลกระทบต่อสิ่งแวดล้อม ผลการวิเคราะห์แสดงให้เห็นว่าเทคโนโลยีอากาศพลศาสตร์ส่งผลทางบวกในการเพิ่มประสิทธิภาพของการบินและลดผลกระทบต่อสิ่งแวดล้อม เป็นกุญแจสำคัญในการขับเคลื่อนอุตสาหกรรมการบินไปสู่เป้าหมาย Net Zero Emissions ภายในปี 2050
เอกสารอ้างอิง
Arif, D. M. (n.d.). Ch03-Physics for aviation. Retrieve from https://www.academia.edu/34115617/Ch03_Physics_for_Aviation
Achleitner, J., Rohde-Brandenburger, K., Rogalla von Bieberstein, P., Sturm, F., & Hornung, M. (2019). Aerodynamic design of a morphing wing sailplane. AIAA Aviation 2019 Forum, Dallas, Texas. Texas: American Institute of Aeronautics and Astronautics
Agarwal, R., Collier, F., Schäfer, A., & Seabridge, A. (2016). Green aviation. USA: Wiley & Sons, Inc.
Bilyaz, I. S., & Percin, Ö. B. (2024). Aerodynamic measurements and benefit quantification of a boundary layer ingested propulsion system. AIAA 2024-1199, Embedded Inlets and Fan Distortion Effects. Retrieved from https://doi.org/10.2514/6.2024-1199
Bows-Larkin, A. (2014). All adrift: Aviation, shipping and climate change policy. Climate Policy, 15(6), 681–702. https://doi.org/10.1080/14693062.2014.965125
Budd, L., & Budd, T. (2013). Environmental technology and the future of flight. In Sustainable aviation futures (Transport and sustainability Vol. 4). Emerald Group Publishing Limited. Retrieved from https://doi.org/10.1108/S2044-9941(2013)0000004004
Chong, C. T., & Ng, J. H. (2023). Limitations to sustainable renewable jet fuels production attributed to cost than energy-water-food resource availability. Nat Commun, 14, 8156. https://doi.org/10.1038/s41467-023-44049-6
Crevecoeur, F., McIntyre, J., Thonnard, J. L., & Lefèvre, P. (2014). Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements. Journal of Neurophysiology, 112(2), 384–392. https://doi.org/10.1152/JN.00061.2014
Dong, C., & Arief, M. M. (2025). Morphing wing designs in commercial aviation. arXiv, 2502, 07182. https://doi.org/10.48550/arXiv.2502.07182
Federal Aviation Administration. (n.d.). Chapter 5 – Aerodynamics of flight. Retrieve from https://www.faa.gov/sites/faa.gov/files/07_phak_ch5_0.pdf
Golovkin, M. A., Efremov, A. A., Makhnev, M. S., & Setukha, A. V. (2018). Calculation methods for estimating the rotary derivatives of forces and moments acting on the aircraft. Russ. Aeronaut, 61(4), 547–554. https://doi.org/10.3103/S1068799818040074
Graver, B., Zhang, K., & Rutherford, D. (2019). CO₂ emissions from commercial aviation, 2018 (working paper 2019-16). Retrieved from https://theicct.org/wp-content/uploads/2021/06/ICCT_CO2-commercl-aviation-2018_20190918.pdf
Graver, B., Rutherford, D, & Zhang, K. (2020). CO2 emissions from commercial aviation: 2013, 2018, and 2019. Retrieved from https://theicct.org/wp-content/uploads/2021/06/CO2-commercial-aviation-oct2020.pdf
International Air Transport Association. (2023). Annual review 2023. Retrieved from https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/annual-review-2023.pdf
International Civil Aviation Organization. (2023). Long-term aspirational goal for international aviation. Retrieved from https://www.icao.int/environmental-protection/Pages/LTAG.aspx
International Energy Agency. (2023). Aviation. Retrieved from https://www.iea.org/energy-system/transport/aviation
Kumar, R., & Bairwa, K. N. (2023). A review: Aeronautical components and systems should have their weight reduced throughout the design process. International Journal of Advanced Engineering, Management and Science, 9(3), 10-14. http://dx.doi.org/10.22161/ijaems.93.3
Lengyel-Kampmann, T., Charroin, G., & Meyer, R. (2024). Experimental and numerical investigation of the counter-rotating DLR Turbo Fan Stage CRISPmulti with boundary layer ingestion. ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition (pp. 1-13). UK: ASME
Luo, S. (2024). Numerical study on the relationship between lift-to-drag ratio and airfoil of gliders in high-speed cruising conditions. Highlights in Science, Engineering and Technology, 93, 65-75. https://doi.org/10.54097/02a7ej10
Luo, S., Eng, T. Z., Tang, Z., Ma, Q., Su, J., & Bugeda, G. (2024). Multidisciplinary optimization of aircraft aerodynamics for distributed propulsion configurations. Applied Sciences, 14(17), 7781. https://doi.org/10.3390/app14177781
Marino, M., & Sabatini, R. (2014). Advanced lightweight aircraft design configurations for green operations. Conference: Practical Responses to Climate Change (PRCC) 2014. Australia: Engineers Australia
Nagel, L. (2025). Distributed electric propulsion (DEP) in 2025. Tyto Robotics. Retrieved from https://www.tytorobotics.com/blogs/articles/distributed-electric-propulsion
Nelson, E. S., & Reddy, D. R. (2017). Green aviation: Reduction of environmental impact through aircraft technology and alternative fuels. London: CRC Press.
Overton, J. (2022). The growth in greenhouse gas emissions from commercial aviation (Updated 2022). Retrieved from Environmental and Energy Study Institute. https://www.eesi.org/papers/view/fact-sheet-the-growth-in-greenhouse-gas-emissions-from-commercial-aviation
Pecora, R. (2021). Morphing wing flaps for large civil aircraft: Evolution of a smart technology across the Clean Sky program. Chinese Journal of Aeronautics, 34(7), 13–28. https://doi.org/10.1016/j.cja.2020.08.004
Peeters, P. M., Williams, V., & Haan, A. (2009). Technical and management reduction potentials. In P. J. Upham & S. Gössling (Eds.), Climate change and aviation: Issues, challenges and solutions (p. 293). UK: Earthscan.
Pustina, L., Blandino, M., Ciottoli, P. P., & Mastroddi, F. (2023). Towards multidisciplinary design optimization of next-generation green aircraft, Materials Research Proceedings, 37, 440-443. https://doi.org/10.21741/9781644902813-97
Ramakrishnan, P. N. (2024). Composite materials, metals, and ceramics used in the Boeing 787: Materials overview. Journal of Research in Science and Engineering (JRSE), 6(8). 57-62. https://doi.org/10.53469/jrse.2024.06(07).13
Raymer, D. P. (2018). Aircraft design: A conceptual approach (6th ed.). Virginia: American Institute of Aeronautics and Astronautics.
Ritchie, H. (2024, April 8). What share of global CO₂ emissions come from aviation? Our World in Data. Retrieved from https://ourworldindata.org/global-aviation-emissions
Salunkhe, P., Wu, Y., & Tang, H. (2020). Aerodynamic performance improvement of a wing model using an array of slotted synthetic jets. ASME Journal of Fluids Engineering, 142(10), 101204. https://doi.org/10.1115/1.4047397
Science World. (2015). Science world resources: Lift. Retrieve from https://www.scienceworld.ca/stories/science-world-resources-lift/
Shi, J., Zhou, J., & Wu, L. (2021). Aerodynamic investigation of a general aviation aircraft with distributed electric propulsion. 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA) (pp. 672–676). China: IEEE
Stephan, R. A., Stumpf, E., Ruhland, J., & Breitsamter, C. (2023). A modeling approach for trailing edge flap forces and moments in the preliminary aircraft design stage. AIAA AVIATION 2023 Forum. San Diego, CA: American Institute of Aeronautics and Astronautics
Thaitechniques.com. (n.d.). Principles of flight. Retrieve from https://www.thaitechnics.com/fly/principle_t.html (in Thai)
Thansonanakarachitta, P. (2019). Did you know? There are 4 forces acting on an airplane at all times. Retrieved from https://www.scimath.org/article-physics/item/9812-4 (in Thai)
Ukpanah, I. (2024). Aviation emissions environmental impact. GreenMatch. Retrieved from https://www.greenmatch.co.uk/blog/aviation-environmental-impact
Usubamatov, R., & Zhumaev, T. (2018). Inertial forces acting on a propeller of aircraft. The Open Aerospace Engineering Journal, 7(1), 1–13. https://doi.org/10.2174/1874146001807010001
Washmuth, D. (2023). Four forces of flight. Overview & Aerodynamics. Retrieve from https://study.com/academy/lesson/airplanes-force-thrust-drag-lift-weight.html
Wen, S. (2024). Current status and application of laminar flow control airfoil design technology. Highlights in Science, Engineering and Technology, 120, 357-363. https://doi.org/10.54097/06qsfh56
Yu, M., Tao, Z., Li, H., & Tang, P. (2024). Optimizing the landing stability of blended-wing-body aircraft with distributed electric boundary-layer ingestion propulsors through a novel thrust control configuration. Applied Sciences, 14(18), 8546. https://doi.org/10.3390/app14188546
Zhang, J., Roumeliotis, I., & Zolotas, A. (2022). Sustainable aviation electrification: A comprehensive review of electric propulsion system architectures, energy management, and control. Sustainability, 14(10), 5880. https://doi.org/10.3390/su14105880
Zhang, S., Lee, D. E., & Qiao, L. (2023). Assessing the drag implications of hydrogen fuel utilization in small aircraft: A preliminary numerical analysis. arXiv preprint arXiv, 2310, 01265. https://doi.org/10.48550/arXiv.2310.01265
