Lignin: Structure Properties and Its Application for Environmental
Keywords:
lignin, biopolymer, pollution control, biomaterials, lignin nanoparticlesAbstract
Lignin is a biopolymer found in plant cell walls and has a complex structure and a variety of functional groups, resulting in lignin’s distinctive properties and ability to react with many chemicals. Therefore, lignin has been used as an alternative material to resolve environmental problems and natural resource shortages, for instance lignin can be used to remove pollutants contaminating water and soil. Lignin has been developed into activated carbon to absorb greenhouse gases that contribute to global warming. Lignin is used as a raw material for manufacturing medical materials and environmentally friendly materials, for example antibacterial and antifungal substrates, capsules for medicine packaging, and bioplastic. In addition, life cycle assessments of lignin-based products show that greenhouse gas emissions are reduced. Studies on the economic feasibility of using lignin as an alternative material indicate that the production costs tend to be higher than using traditional materials due to limitations in production technology and understanding the structure and the morphological characteristics of lignin. However, lignin has gained attention worldwide, with current uses focused mainly on energy production through combustion. The main challenges include optimizing the structural properties of lignin and increasing its quality, alongside developing environmentally friendly extraction methods for industrial applications. Such development of lignin utilization can significantly help conserve natural resources and reduce environmental impacts in the long term.
References
Agustiany, E. A., Rasyidur Ridho, M., Rahmi DN, M., Madyaratri, E. W., Falah, F., Lubis, M. A. R., & Fudholi, A. (2022). Recent developments in lignin modification and its application in lignin‐based green composites: a review. Polymer Composites, 43(8), 4848-4865. https://doi.org/10.1002/pc.26824
Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products, 139, 111526. https://doi.org/10.1016/j.indcrop.2019.111526
Bertella, S., & Luterbacher, J. S. (2020). Lignin functionalization for the production of novel materials. Trends in Chemistry, 2(5), 440-453. https://doi.org/10.1016/j.trechm.2020.03.001
Boquera, L., Olacia, E., Fabiani, C., Pisello, A. L., D’Alessandro, A., Ubertini, F., & Cabeza, L. F. (2021). Thermo-acoustic and mechanical characterization of novel bio-based plasters: The valorisation of lignin as by-product from biomass extraction for green building applications. Construction and Building Materials, 278, 122373. https://doi.org/10.1016/j.conbuildmat.2021.122373
Börcsök, Z., & Pásztory, Z. (2021). The role of lignin in wood working processes using elevated temperatures: An abbreviated literature survey. European Journal of Wood and Wood Products, 79, 511-526. https://doi.org/10.1007/s00107-020-01637-3
Casimiro, F. M., Costa, C. A., Vega-Aguilar, C., & Rodrigues, A. E. (2022). Hardwood and softwood lignins from sulfite liquors: Structural characterization and valorization through depolymerization. International Journal of Biological Macromolecules, 215, 272-279. https://doi.org/10.1016/j.ijbiomac.2022.06.067
Chauhan, P. S., Agrawal, R., Kumar, R., Gupta, R. P., & Ramakumar, S. S. V. (2022). Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis. International Journal of Biological Macromolecules, 197, 179-200. https://doi.org/10.1016/j.ijbiomac.2021.12.146
Chen, M., Li, Y., Liu, H., Zhang, D., Shi, Q. S., Zhong, X. Q., & Xie, X. B. (2023). High value valorization of lignin as environmental benign antimicrobial. Materials Today Bio, 18, 100520. https://doi.org/10.1016/j.mtbio.2022.100520
Damayanti, D., Wulandari, Y. R., & Wu, H. S. (2020). Product distribution of chemical product using catalytic depolymerization of lignin. Bulletin of Chemical Reaction Engineering & Catalysis, 15, 432-453. https://doi.org/10.9767/bcrec.15.2.7249.432-453
Djajadi, D. T., Jensen, M. M., Oliveira, M., Jensen, A., Thygesen, L. G., Pinelo, M., & Meyer, A. S. (2018). Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes. Biotechnology for Biofuels, 11, 1-13. https://doi.org/10.1186/s13068-018-1085-0
Durmaz, E., Sertkaya, S., Yilmaz, H., Olgun, C., Ozcelik, O., Tozluoglu, A., & Candan, Z. (2023). Lignocellulosic bionanomaterials for biosensor applications. Micromachines, 14(7), 1450. https://doi.org/10.3390/mi14071450
Enayathali, S. S., & Nachiappan, V. (2024). Environment friendly soil stabilization using lignin biopolymer. International Research Journal on Advanced Engineering Hub, 2(6), 1600-1605. https://doi.org/10.47392/IRJAEH.2024.0219
Fu, F., Luo, J., Zhao, L., Yang, F., & Wang, N. (2024). Impact of cellulose and lignin on restoration of vegetation and soil chemical properties for saline-alkali soil of songnen plain. Plos One, 19(1), e0296366. https://doi.org/10.1371/journal.pone.0296366
Hasan, M. S., Sardar, M. R., Shafin, A. A., Rahman, M. S., Mahmud, M., & Hossen, M. M. (2023). A brief review on applications of lignin. Journal of Chemical Reviews, 5(1), 56-82. https://doi.org/10.22034/jcr.2023.359861.1186
He, L., Dai, Z., Liu, X., Tang, C., & Xu, J. (2021). Effect of alkaline lignin on immobilization of cadmium and lead in soils and the associated mechanisms. Chemosphere, 281, 130969. https://doi.org/10.1016/j.chemosphere.2021.130969
Jeong, J., Kim, W. S., Lee, M. W., & Goh, M. (2021). Liquefaction of lignin using chemical decomposition and its application to polyurethane foam. ACS omega, 6(16), 10745-10751. https://doi.org/10.1021/acsomega.1c00285
Kai, D., Chow, L. P., & Loh, X. J. (2018). Lignin and its properties. In J. X. Loh, D. Kai, & Z. Li (Eds.), Functional materials from lignin: Methods and advances (Vol. 3) (pp. 1-28). London: World Scientific Publishing.
Karagoz, P., Khiawjan, S., Marques, M. P., Santzouk, S., Bugg, T. D., & Lye, G. J. (2024). Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: Linking lignin source and processing with clinical indication. Biomass Conversion and Biorefinery, 14(21), 26553-26574. https://doi.org/10.1007/s13399-023-03745-5
Khan, P., Ali, S., Jan, R., & Kim, K. M. (2024). Lignin Nanoparticles: Transforming Environmental Remediation. Nanomaterials, 14(18), 1541. https://doi.org/10.3390/nano14181541
Kocaturk, E., Salan, T., Ozcelik, O., Alma, M. H., & Candan, Z. (2023). Recent advances in lignin-based biofuel production. Energies, 16(8), 3382. https://doi.org/10.3390/en16083382
Krzyzaniak, M., Stolarski, M. J., & Warmiński, K. (2019). Life cycle assessment of poplar production: Environmental impact of different soil enrichment methods. Journal of Cleaner Production, 206, 785-796. https://doi.org/10.1016/j.jclepro.2018.09.180
Lee, J. G., Larive, L. L., Valsaraj, K. T., & Bharti, B. (2018). Binding of lignin nanoparticles at oil–water interfaces: An ecofriendly alternative to oil spill recovery. ACS applied materials & Interfaces, 10(49), 43282-43289. https://doi.org/10.1021/acsami.8b17748
Li, D., Li, Z., Wei, X., Hu, T., Deng, J., Zhang, M., & Zhang, Y. (2024). Efficient removal of lead from polluted paddy soil by one-pot synthesized Nano-Fe3O4 incorporated stable lignin hydrogel. Chemical Engineering Journal, 496, 154196. https://doi.org/10.1016/j.cej.2024.154196
Li, K., Zhong, W., Li, P., Ren, J., Jiang, K., & Wu, W. (2023). Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. International Journal of Biological Macromolecules, 2023, 125992. https://doi.org/10.1016/j.ijbiomac.2023.125992
Lisý, A., Ház, A., Nadányi, R., Jablonský, M., & Šurina, I. (2022). About Hydrophobicity of lignin: A review of selected chemical methods for lignin valorisation in biopolymer production. Energies, 15(17), 6213. https://doi.org/10.3390/en15176213
Liu, Y., Huang, Y., Zhang, C., Li, W., Chen, C., Zhang, Z., & Zhang, Y. (2020). Nano-FeS incorporated into stable lignin hydrogel: A novel strategy for cadmium removal from soil. Environmental Pollution, 264, 114739. https://doi.org/10.1016/j.envpol.2020.114739
Liu, L., Cui, B., Tan, L., & Wang, W. (2021). Improving the combination of cellulose and lignin using xylan as a compatibilizer. Cellulose, 28(9), 5335-5349. https://doi.org/10.1007/s10570-021-03864-0
Lu, X., & Gu, X. (2022). A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading to improve process efficiency. Biotechnology for Biofuels and Bioproducts, 15(1), 106. https://doi.org/10.1186/s13068-022-02203-0
Meng, X., Scheidemantle, B., Li, M., Wang, Y. Y., Zhao, X., Toro-González, M., & Ragauskas, A. J. (2020). Synthesis, characterization, and utilization of a lignin-based adsorbent for effective removal of azo dye from aqueous solution. ACS Omega, 5(6), 2865-2877. https://doi.org/10.1021/acsomega.9b03717
Mergbi, M., Galloni, M. G., Aboagye, D., Elimian, E., Su, P., Ikram, B. M., & Djellabi, R. (2023). Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. Environmental Science and Pollution Research, 30(30), 74544-74574. https://doi.org/10.1007/s11356-023-27484-2
More, A., Elder, T., & Jiang, Z. (2021). A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung, 75(9), 806-823. https://doi.org/10.1515/hf-2020-0165
Moreno, A., & Sipponen, M. H. (2020). Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons, 7(9), 2237-2257. https://doi.org/10.1039/D0MH00798F
Moretti, C., Corona, B., Hoefnagels, R., Vural-Gürsel, I., Gosselink, R., & Junginger, M. (2021). Review of life cycle assessments of lignin and derived products: Lessons learned. Science of the Total Environment, 770, 144656. https://doi.org/10.1016/j.scitotenv.2020.144656
Neiva, D. M., Rencoret, J., Marques, G., Gutiérrez, A., Gominho, J., Pereira, H., & Del Río, J. C. (2020). Lignin from tree barks: chemical structure and valorization. ChemSusChem, 13(17), 4537-4547. https://doi.org/10.1002/cssc.202000431
Nikolic, M., Cáceres Najarro, M., Johannsen, I., Iruthayaraj, J., Ceccato, M., & Feilberg, A. (2020). Copper adsorption on lignin for the removal of hydrogen sulfide. Molecules, 25(23), 5577. https://doi.org/10.3390/molecules25235577
Ouyang, X. P., Tan, Y. D., & Qiu, X. Q. (2014). Oxidative degradation of lignin for producing monophenolic compounds. Journal of Fuel Chemistry and Technology, 42(6), 677-682. https://doi.org/10.1016/S1872-5813(14)60030-X
Pandian, B., Ramalingam, S., Sreeram, K. J., & Rao, J. R. (2021). Natural pigment: Preparation of brown pigment from lignin biomass for coloring application. Dyes and Pigments, 195, 109704. https://doi.org/10.1016/j.dyepig.2021.109704
Patel, R., Dhar, P., Babaei-Ghazvini, A., Dafchahi, M. N., & Acharya, B. (2023). Transforming lignin into renewable fuels, chemicals, and materials: A review. Bioresource Technology Reports, 22, 101463. https://doi.org/10.1016/j.biteb.2023.101463
Piccinino, D., Capecchi, E., Tomaino, E., Gabellone, S., Gigli, V., Avitabile, D., & Saladino, R. (2021). Nano-structured lignin as green antioxidant and UV shielding ingredient for sunscreen applications. Antioxidants, 10(2), 274. https://doi.org/10.3390/antiox10020274
Qin, Z., Liu, H. M., Gu, L. B., Sun, R. C., & Wang, X. D. (2020). Lignin as a natural antioxidant: Property-structure relationship and potential applications. In T.J. Gutiérrez (Ed.), Reactive and functional polymers (Vol. 1) (pp. 65-93). Switzerland: Springer Nature.
Reyes, D. C., Ma, Z., & Romero, J. J. (2024). The Antimicrobial Properties of Technical Lignins and Their. Derivatives—A Review. Polymers, 16(15), 2181. https://doi.org/10.3390/polym16152181
Rizal, S., Alfatah, T., HPS, A. K., Mistar, E. M., Abdullah, C. K., Olaiya, F. G., & Muksin, U. (2021). Properties and characterization of lignin nanoparticles functionalized in macroalgae biopolymer films. Nanomaterials, 11(3), 637. https://doi.org/10.3390/nano11030637
Sajjadi, M., Ahmadpoor, F., Nasrollahzadeh, M., & Ghafuri, H. (2021). Lignin-derived (nano) materials for environmental pollution remediation: Current challenges and future perspectives. International Journal of Biological Macromolecules, 178, 394-423. https://doi.org/10.1016/j.ijbiomac.2021.02.165
Sharma, S., & Kumar, A. (2020). Lignin: biosynthesis and transformation for industrial applications. Switzerland: Springer Nature.
Shi, X., Qiao, Y., An, X., Tian, Y., & Zhou, H. (2020). High-capacity adsorption of Cr (VI) by lignin-based composite: Characterization, performance and mechanism. International Journal of Biological Macromolecules, 159, 839-849. https://doi.org/10.1016/j.ijbiomac.2020.05.130
Shi, K., Liu, G., Sun, H., & Weng, Y. (2023). Polylactic acid/lignin composites: A review. Polymers, 15(13), 2807. https://doi.org/10.3390/polym15132807
Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J. T., Tsang, D. C., & Hunt, A. J. (2019). Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresource Technology, 272, 570-581. https://doi.org/10.1016/j.biortech.2018.09.139
Solihat, N. N., Sari, F. P., Falah, F., Ismayati, M., Lubis, M. A. R., Fatriasari, W., & Syafii, W. (2021). Lignin as an active biomaterial: a review. Jurnal Sylva Lestari, 9(1), 1-22. https://doi.org/10.23960/jsl191-22
Tedeschi, G., Guzman-Puyol, S., Ceseracciu, L., Paul, U. C., Picone, P., Di Carlo, M., & Heredia-Guerrero, J. A. (2020). Multifunctional bioplastics inspired by wood composition: effect of hydrolyzed lignin addition to xylan–cellulose matrices. Biomacromolecules, 21(2), 910-920. https://doi.org/10.1021/acs.biomac.9b01569
Torres, L. A. Z., Woiciechowski, A. L., de Andrade Tanobe, V. O., Karp, S. G., Lorenci, L. C. G., Faulds, C., & Soccol, C. R. (2020). Lignin as a potential source of high-added value compounds: A review. Journal of Cleaner Production, 263, 121499. https://doi.org/10.1016/j.jclepro.2020.121499
Vasile, C., & Baican, M. (2023). Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials. Polymers, 15(15), 3177. https://doi.org/10.3390/polym15153177
Verdini, F., Gaudino, E. C., Canova, E., Tabasso, S., Behbahani, P. J., & Cravotto, G. (2022). Lignin as a natural carrier for the efficient delivery of bioactive compounds: From waste to health. Molecules, 27(11), 3598. https://doi.org/10.3390/molecules27113598
Wang, B., Wang, S. F., Lam, S. S., Sonne, C., Yuan, T. Q., Song, G. Y., & Sun, R. C. (2020). A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications. Renewable and Sustainable Energy Reviews, 134, 110384. https://doi.org/10.1016/j.rser.2020.110384
Wenger, J., Haas, V., & Stern, T. (2020). Why can we make anything from lignin except money? Towards a broader economic perspective in lignin research. Current Forestry Reports, 6, 294-308. https://doi.org/10.1007/s40725-020-00126-3
Xiao, D., Ding, W., Zhang, J., Ge, Y., Wu, Z., & Li, Z. (2019). Fabrication of a versatile lignin-based nano-trap for heavy metal ion capture and bacterial inhibition. Chemical Engineering Journal, 358, 310-320. https://doi.org/10.1016/j.cej.2018.10.037
Xiao, L., Liu, W., Huang, J., Lou, H., & Qiu, X. (2020). Study on the antioxidant activity of lignin and its application performance in SBS elastomer. Industrial & Engineering Chemistry Research, 60(1), 790-797. https://doi.org/10.1021/acs.iecr.0c04699
Yu, O., & Kim, K. H. (2020). Lignin to materials: A focused review on recent novel lignin applications. Applied Sciences, 10(13), 4626. https://doi.org/10.3390/app10134626
Zhang, X., Xu, H., Xiang, W., You, X., Dai, H., & Gao, B. (2024). Lignin-impregnated biochar assisted with microwave irradiation for CO2 capture: adsorption performance and mechanism. Biochar, 6(1), 22. https://doi.org/10.1007/s42773-024-00310-9
Zhang, Y., & Naebe, M. (2021). Lignin: A review on structure, properties, and applications as a light-colored UV absorber. ACS Sustainable Chemistry & Engineering, 9(4), 1427-1442. https://doi.org/10.1021/acssuschemeng.0c06998
Zhang, Z., Terrasson, V., & Guénin, E. (2021). Lignin nanoparticles and their nanocomposites. Nanomaterials, 11(5), 1336. https://doi.org/10.3390/nano11051336
Zhao, J., Zhang, W., Wang, Q., Shen, D., & Wang, Z. (2024). Lignin-derived porous carbons for efficient CO2 adsorption. Carbon Capture Science & Technology, 13, 100233. https://doi.org/10.1016/j.ccst.2024.100233
Zhao, Y., Xue, L., Huang, Z., Lei, Z., Xie, S., Cai, Z., & Xie, S. (2024). Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nature Communications, 15(1), 9288. https://doi.org/10.1038/s41467-024-53609-3
