การพยากรณ์อากาศยานอุบัติเหตุจากการวิเคราะห์และจำแนกปัจจัยมนุษย์ด้วยเนอีฟเบย์

ผู้แต่ง

  • บุญญวัฒน์ อักษรกิตติ์ สถาบันเทคโนโลยีการบินและอวกาศ มหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก
  • วรรษมนต์ สันติศิริ สถาบันเทคโนโลยีการบินและอวกาศ มหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก

คำสำคัญ:

พยากรณ์, อากาศยาน, อุบัติเหตุ, ปัจจัยมนุษย์, เนอีฟเบย์

บทคัดย่อ

การวิจัยครั้งนี้ มีวัตถุประสงค์เพื่อ (1) เพื่อวิเคราะห์สาเหตุการเกิดอากาศยานอุบัติเหตุ และ (2) เพื่อวัดประสิทธิภาพการพยากรณ์อากาศยานอุบัติเหตุ ใช้การสุ่มตัวอย่างแบบไม่อาศัยความน่าจะเป็น ด้วยวิธีเฉพาะเจาะจงจากอากาศยานพาณิชย์แอร์บัส รุ่น A320-A321 ที่มีรายงานเกิดอุบัติเหตุช่วงการลงจอดและมีรายงานการสอบสวนอุบัติเหตุเสร็จสมบูรณ์ ด้วยปัจจัย เช่น เวลา สภาพอากาศ จำนวนทางวิ่ง HFACS เป็นต้น ตั้งแต่ปี ค.ศ.2013-2023 ที่ จำนวน 67 ชุด แบ่งเป็น 2 ชุด คือ ชุดฝึกสอน จำนวน 54 ชุด และชุดทดสอบ จำนวน 13 ชุด เครื่องมือในการวิเคราะห์ข้อมูล คือ ค่าความถี่ ร้อยละ และเนอีฟเบย์ ผลการวิจัยพบว่า (1) สาเหตุการเกิดอากาศยานอุบัติเหตุ คือ ข้อจำกัดทางกายภาพ และข้อผิดพลาดของมนุษย์ เป็นต้น และ (2) ประสิทธิภาพการพยากรณ์อากาศยานอุบัติเหตุ ได้เท่ากับ 0.69

References

Amati, G. (2024). Top 5: Airbus’ most popular commercial aircraft designs. Retrieved from https://simpleflying.com/airbus-most-popular-designs-list

Bisht, R. (2024). What is purposive sampling? methods, techniques, and examples. Retrieved from https://bit.ly/4fhMhPG

Caetano, M. (2022). Aviation accident and incident forecasting combining occurrence investigation and meteorological data using machine learning. Aviation, 27(1), 47-56. https://doi.org/10.3846/aviation.2023.18641

De Castroverde. (2024). What are the safest forms of transportation?. Retrieved from https://www.dlgteam.com/blog/what-are-the-safest-forms-of-transportation/

Eiampan, T., Wongkamchang, P., Kosanwat, P., Ruaengmaneeya, N., & Thothong, W. (2022). Safety risk management of human factors in flight operations with the Royal Thai Air Force vertical take-off and landing solar power UAV according to the standards of the International Civil Aviation Organization. EAU Heritage Journal Science and Technology, 16(2), 91-104. (in Thai)

Granja, U., Sanchez, J. M., & Rodriguez, J. V. (2024). Assessing economic performance and aviation accidents using zero-inflated and over-dispersed panel data models. Journal of Air Transport Management, 118, 102599. https://doi.org/10.1016/j.jairtraman.2024.102599

Hendricks, R. (2024). What is a good accuracy score in machine learning?. Retrieved from https://bit.ly/4fGiC2o

Hutman, H., Ellis, M. V., Moore, J. A., Roberson, K. L., McNamara, M. L., Peterson, L. P., Taylor, E. J., & Zhou, S. (2023). Supervisees’ perspectives of inadequate, harmful, and exceptional clinical supervision: Are we listening?. The Counseling Psychologist, 51(5), 719-755. https://doi.org/10.1177/00110000231172504

International Civil Aviation Organization. (2023). Accident statistics. Retrieved from https://www.icao.int/safety/iStars/Pages/Accident-Statistics.aspx

International Civil Aviation Organization. (2016). Aircraft accident and incident investigation (7th ed). Quebec, Canada: ICAO

Ison, D. C. (2015). Comparative analysis of accident and non-accident pilots. Journal of Aviation Technology and Engineering, 4(2), 20–31. https://bit.ly/4fCy2Vg

Jalali, M., Dehghan, H., Habibi, E., & Khakzad, N. (2023). Application of “Human Factor Analysis and Classification System” (HFACS) model to the prevention of medical errors and adverse events: A systematic review. International Journal of Preventive Medicine, 14, 127. https://doi.org/10.4103/ijpvm.ijpvm_123_22

Jirapanthong, W., & Banluesapy, S. (2022). Towards machine learning algorithm for screening prediction of Covid-19 patients. Journal of Information Science and Technology, 12(1), 47-60. (in Thai)

Jongmuanwai, B., & Poommarin, K. (2022). The developing of prediction model Premier League football results with datamining technique. Journal of Applied Information Technology, 8(2), 92-101. (in Thai)

Kaji, D., Mehta, D., Sanghani, D., Shah, H., & Malvankar, R. (2019). Study of prediction algorithms on aviation accident dataset using rapid miner. International Research Journal of Engineering and Technology, 6(4), 1,670-1,672. https://www.irjet.net/archives/V6/i4/IRJET-V6I4355.pdf

Kinanti, L. (2024). Human factors analysis and classification system. Retrieved from https://ewdpi.ub.ac.id/human-factors-analysis-and-classification-system-hfacs/

Kitcharoen, K. (2021). Factors influencing Thai customer loyalty towards a Thailand based airlines company. Journal of Humanities and Social Science Nakhon Phanom University, 11(2), 1-16. (in Thai)

Lazaro, F. L., Nogueira, R. R., Valerio, D., & Santos, L. M. (2024). Human factors as predictor of fatalities in aviation accidents: A neural network analysis. Applied Sciences, 14(2), 640. https://doi.org/10.3390/app14020640

Lyssakov, N., & Lyssakova, E. (2019). Human factor as a cause of aircraft accidents. In International Scientific-Practical Conference “Psychology of Extreme Professions” (pp.130-132). Arkhangelsk region, Russia: Northern (Arctic) Federal University.

Maayan, G. D. (2023). A practical guide to working with testing and training data in ml projects. Retrieved from https://bit.ly/3CuFOSI

Mathavara, K., & Ramachandran, G. (2022). Role of human factors in preventing aviation accidents: An insight. London: IntechOpen Limited.

Mathur, P., Khatri, S. K., & Sharma, M. (2017). Prediction of aviation accidents using logistic regression model. In International Conference on Infocom Technologies and Unmanned Systems (pp.725-728). United Arab Emirates: Amity University Dubai.

Mehta, J., Vatsaraj, V., Shah, J., & Godbole, A. (2021). Airplane crash severity prediction using machine learning. In 12th International Conference on Computing Communication and Networking Technologies (pp.1-6). Kharagpur, India: IEEE. doi: 10.1109/ICCCNT51525.2021.9579711

Niu, L., & Krutkrongphan, S. (2024). The influencing of personal factors, external factors, and environmental factors on online learning satisfaction: A case of Sias university in Zhengzhou, China. Procedia of Multidisciplinary Research, 2(5), 1-9. https://bit.ly/4fFDUgp

Ray, S. (2024). Naive Bayes classifier explained. Retrieved from https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Rookeaw, S., Huangsuwan, S., Noitonglek, K., & Payon, J. (2022). Aircraft accidents in commercial aviation part 1 statistics and facts of the accidents. EAU Heritage Journal Science and Technology, 13(3), 30-42. (in Thai)

Satangmongkol, K. (2023). Confusion matrix. Retrieved from https://datarockie.com/blog/confusion-matrix-explained/. (in Thai)

Schmidinger, J., Schroter, I., Gebbers, R., & Vogel, S. (2024). Effect of training sample size, sampling design and prediction model on soil mapping with proximal sensing data for precision liming. Precision Agriculture, 25, 1,529-1,555. https://doi.org/10.1007/s11119-024-10122-3

Silagyi, D. V., & Liu, D. (2023). Prediction of severity of aviation landing accidents using support vector machine models. Accident Analysis and Prevention, 187(2023), 1-20. https://doi.org/10.1016/j.aap.2023.107043

Simplilearn. (2024). What is a confusion matrix in machine learning?. Retrieved from https://bit.ly/40zhZTY

Skybrary. (2024). Human factors analysis and classification system. Retrieved from https://skybrary.aero/articles/human-factors-analysis-and-classification-system-hfacs

Sonny, B. R., Isip, M. N., Liongson, G. J., & Marquez, J. P. (2023). Road safety management: assessment of the accident severity of identified areas and development of accident prediction model in the city of San Fernando, Pampanga. International Journal of Progressive Research in Science and Engineering, 4(6), 70-79. https://journal.ijprse.com/index.php/ijprse/article/view/898

Statista. (2024). Airbus beats Boeing for deliveries in 2024. Retrieved from https://bit.ly/40CnAbZ

Vadapalli, P. (2023). Naive Bayes explained: Function, advantages & disadvantages. Retrieved from https://www.upgrad.com/blog/naive-bayes-explained/

Yeoum, J. M., & Lee, Y. H. (2013). A study on prediction modeling of Korea military aircraft accident occurrence. International Journal of Industrial Engineering, 20(9-10), 562-573. https://doi.org/10.23055/ijietap.2013.20.9-10.1138

Zhang, X., & Mahadevan, S. (2021). Bayesian network modeling of accident investigation reports for aviation safety assessment. Reliability Engineering and System Safety, 209, 107371. https://doi.org/10.1016/j.ress.2020.107371

Zhao, L., Zhang, L., & Wang, J. (2022). Text mining classification and prediction of aviation accidents based on TF-IDF-SVR method. In 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC), Qingdao, China, 2022 (pp. 322-327). Qingdao, China: IEEE

Downloads

เผยแพร่แล้ว

2024-12-12