Energy Conservation in the Closed-System Greenhouse

Authors

  • Thanakorn Namhormchan School of Engineering, Eastern Asia University
  • Nuttapong Muangchan School of Engineering, Eastern Asia University

Keywords:

smart agriculture, energy conservation, greenhouse, evaporative cooling system

Abstract

The cultivation of plants in an automatic closed-system greenhouse develops the cultivation for precision agriculture. Growing plants in microclimate-controlled greenhouses to suit the plants growth makes the plants grow with quality and quantity as needed. This article describes energy conservation guidelines in a closed-system greenhouse, which has microclimate controls in the greenhouse using cooling techniques. Electric motors are a key component in a microclimate-controlled system, which is regarded as system with significant electrical machinery with the potential to conserve energy in a closed-system greenhouse. The energy conservation guidelines are as follows: (1) Energy saving with electric motors, (2) Energy saving with electric motor control systems, and (3) Energy management in closed-system greenhouses. The energy conservation helps to reduce energy consumption, reduce electrical costs, reduce energy imports and reduce global warming as well.

Downloads

Download data is not yet available.

References

References

Bartok, J. W. Jr. (2005). Greenhouse energy conservation checklist. Retrieved from

https://ag.umass.edu/greenhouse-floriculture/fact-sheets/greenhouse-energy-conservation-checklist

Conley’s Manufacturing and Sales. (2019). Evaporative cooling system. Retrieved from

https://www.conleys.com/products/evaporative-cooling-system

China Green Agriculture Engineering and Technology. n.d. Fan & pad: adjust greenhouse temperature well. Retrieved from

https://www.greenagro-cn.com/index.php/index/productsart/cid/GreenhouseEquipment/id/12.html

David. (2019). Global smart greenhouse irrigation system market 2019 revenue–netafim, valmont, irritec, John Deere, T-L, rivulis. Retrieved from https://thetechnologymarket.com/global-smart-greenhouse-irrigation-system-market-2019-revenue-netafim-valmont-irritec-john-deere-t-l-rivulis/45602/

ecoHVAC. (2017). Why-choose-evaporative-cooling. Retrieved from https://ecohvac.com.au/products/ why-choose-evaporative-cooling/why-choose-evaporative-cooling/

Energy Management in the Greenhouse. n.d. Course of energy management in agriculture.

Chiang Mai: Maejo University (in thai)

Factomart. (2019). Efficiency and energy saving in motor control systems. Retrieved from

https://mall.factomart.com/guide-to-motor-control/efficiency-and-power-saving/ (in Thai)

Hortitech Greenhouse. (2015). Selecting the right greenhouse frame. Retrieved from

https://www.greenhouseht.com/greenhouse-frames

Harjunowibowo, A., Cuce, E., Omer, S. A., & Riffat, S. B. (2016). Recent passive technologies of greenhouse systems: A review. 15 th international conference on sustainable energy technologies–SET 2016, 19 th–22 nd of July 2016 (pp. 1-10). Singapore: National University of Singapore.

Hemming, S. (2010). Energy and climate in Dutch greenhouses. Retrieved from

https://edepot.wur.nl/158852

iEnergyGuru. (2015). Energy conservation of motors. Retrieved from

https://ienergyguru.com/2015/08/การอนุรักษ์พลังงานของม/. (in Thai)

Information Center Office of the Permanent Secretary for Agriculture and Cooperatives. (2019). Reinventing the agricultural sector, pushing “intelligent tomato greenhouse”. Retrieved from https://www.opsmoac.go.th/datacenter-news-preview-411691791322. (in Thai)

Ministry of Agriculture and Coopertives. (2019). Ministry of Agriculture and Cooperatives Led Organizations in all sectors: Joint drive “intelligent agriculture”. Retrieved from

https://www.moac.go.th/news-preview 411191791414 (in Thai)

Modern Manufacturing. (2017). Costs reduce by conserving electrical energy from motors techniques. Retrieved from https://www.mmthailand.com/ลดต้นทุน-พลังงานไฟฟ้า-motor/ (in Thai)

Qingzhou Rainbow Modern Agriculture Development. (2017). Greenhouse system- shading net, top and side ventilation, cooling pad and fan, heating boiler, circulation fan, LED light, seedling bed, drip irrigation etc. Retrieved from https://bit.ly/35jektN

Santosh, D.T., Tiwari, K.N., Singh, V. K., & Gopala, A. R. (2017). Micro climate control in greenhouse. International Journal of Current Microbiology and Applied Sciences, 6(3), 1730-1742.

Theerawituj, S. (2016). Smart Farm, eco-friendly agriculture. Retrieved from https://library2.parliament.go.th/ebook/content-issue/2559/hi2559-093.pdf. (in Thai)

Namhormchan, T. (2019). Plant factory. EAU Heritage Journal Science and Technology, 13(2), 46-62. (in Thai)

Yushi Group. (2016). Evaporative fan, Evap, cold and heat vent. Retrieved from

https://yushi.co.th/ทำงานเครื่องทำลมเย็น/ (in Thai)

Published

2020-04-19

Issue

Section

บทความพิเศษ