FORECASTING THE RATE OF ELDERLY WITH STRESS PROBLEMS IN LOPBURI PROVINCE
Keywords:
forecasting, the elderly, stress problemsAbstract
Objectives: To develop a time series model to predict the rate of elderly with stress problems in Lopburi Province, fiscal year 2024.
Material and Methods: Statistical time series forecasting with secondary data collected from standard reports to promote and prevent mental health problems stress screening (ST-5) among elderly people aged 60 years and over of the Ministry of Public Health, fiscal year 2018 to 2024 (processed on April 20, 2024) using polynomial regression and Gray System Theory. Forecast accuracy is measured by the coefficient of determination and the mean absolute percentage error.
Results: The model based on a polynomial regression equation gave a forecast value for fiscal year 2024 of 341 per 10,000 screened elderly people, an increase of three times from fiscal year 2023. When compared to the actual value for fiscal year 2024 (processed on April 20, 2024), the rate of elderly people having stress problems was 262, an increase of 30.3 percent. The predicted value using the polynomial regression equation had a correlation with the actual value of 0.97, with a coefficient of determination of 94.11 percent, and the mean absolute percentage error (MAPE) was 12.53, within the criteria that the model had good prediction accuracy. While the GM (1,1) and GM (1,1) EPC models had the very low correlations between the predicted values and the actual values, and the MAPEs were higher than the model based on polynomial regression equations.
Conclusion: Data for fiscal years 2018 to 2024 fluctuated from an initial drop in half, then an increase, then a two-year decline, then an increase more than tripling in fiscal year 2024. When deciding on a forecasting model based on the most consistent with the original data and the least different from the original data, a polynomial regression model may no longer be a suitable choice. Therefore, qualitative information must be used, including external factors and the implementation of various projects by agencies related to factors that contribute to stress reduction among the elderly.
References
World Health Organization. Stress. [online]. Available from:https://www.who.int/news-room/questions-and-answers/item/stress [2024 Apr 21].
Mental Health Foundation. How to manage and reduce stress. [online]. Available from: https://www.mentalhealth. org.uk/explore-mental-health/publications/how-manage-and-reduce-stress [2024 Apr 21].
Wilson D. The most and least stressed countries in the world 2024. [online]. Available from: https://ceoworld. biz /2024/03/26/the-most-and-least-stressed-countries-in-the-world-2024/ [2024 Apr 21].
สุจริต สุวรรณชีพ, นันทนา รัตนากร, กาญจนา วณิชรมณีย์, พรรณี ภาณุวัฒน์สุข, นันท์นภัส ประสานทอง, บรรณาธิการ. แนวทางการดูแลทางด้านสังคมจิตใจของผู้สูงอายุเพื่อป้องกันปัญหาสุขภาพจิต (ฉบับปรับปรุงครั้งที่ 1). พิมพ์ครั้งที่ 4. กรุงเทพฯ: ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย จำกัด; 2558.
Seangpraw K, Auttama N, Kumar R, Somrongthong R, Tonchoy P, Panta P. Stress and associated risk factors among the elderly: a cross-sectional study from rural area of Thailand. F1000Res 2019; 8: 655. doi:10.12688/f1000 research.17903.2.
ดุษฎี คาวีวงศ์, รุจิรา ดวงสงค์. ปัจจัยที่มีความสัมพันธ์ กับภาวะความเครียดของผู้สูงอายุในเขตเทศบาลนครขอนแก่น.วารสารวิจัยสาธารณสุขศาสตร์มหาวิทยาลัยขอนแก่น 2563; 13(2): 36-46.
กระทรวงสาธารณสุข. กลุ่มรายงานมาตรฐาน ส่งเสริมและป้องกันปัญหาสุขภาพจิต การคัดกรองความเครียด (ST-5) ในกลุ่มผู้สูงอายุ. [online]. Available from: https:// hdcservice.moph.go.th/hdc/reports/report.php?&cat_id=574437c29aff8d1709da55677abc4b03&id=7bd56fb9f20abea2eb72dfca24155e6a# [2024 Apr 21].
Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice. 2nd edition. Melbourne, Australia: OTexts; 2018.
Pennstate Eberly College of Science. STAT 462 Applied Regression Analysis, 7.7 - Polynomial Regression. [Online]. Available from: https://online.stat.psu.edu/stat 462/node/158/ [2024 Apr 18].
Liu S, Lin Y. Grey systems theory and application. Verlag: Springer; 2010.
Lin YH, Chiu CC, Lin YJ, Lee PC. Rainfall prediction using innovative grey model with the dynamic index. Journal of Marine Science and Technology 2013; 21(1): 63-75.
Makridakis SG. Accuracy Measures: Theoretical and Practical Concerns. International Journal of Forecasting 1993; 9(4): 527–29. https://doi.org/10.1016/0169-2070 (93)90079-3.
Pennstate Eberly College of Science. STAT 200 Elementary Statistics, 3.4.2- Correlation. [online]. Available from: https://online.stat.psu.edu/stat 200/lesson/3/3.4/3.4.2 [2024 Apr 18].
Lewis CD. Industrial and business forecasting methods. London: Butterworths; 2023.
เบ็ญจมาศ พฤฒารา, วิภาพร สิทธิจันทร์. การพยากรณ์สถานการณ์ของผู้ป่วยนิติจิตเวชที่มารับบริการที่สถาบันกัลยาณ์ราชนครินทร์. วารสารสถาบันจิตเวชศาสตร์สมเด็จเจ้าพระยา 2565; 16(2): 14-28.
Center of Reinforcement for Research, Mahidol University. Self-Assessment form whether an activity is human subject research which requires ethical approval (Eng, Thai) [online]. 2024. Available from: https://sp. mahidol.ac.th/th/ethics-human/forms/checklist/2022-Human%20Research%20Checklist-researcher.pdf [2024 Apr 18].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Somdet Chaopraya Institute of Psychiatry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articles published are copyright of Journal of Somdet Chaopraya Institute of Psychiatry.