Predicting the number of neonatal deaths in Thailand using grey system theory

Authors

  • Jintaphon Rattanahon Faculty of Nursing, Pathumthani University
  • Vadhana Jayathavaj Faculty of Allied Health Sciences, Pathumthani University

Keywords:

Prediction, The number of neonatal deaths, Health region, Grey system theory

Abstract

The infant mortality rate is an indicator of a country's level of development. Forecasting can be used as a guideline for health resource administration. This research aimed to predict the number of neonatal deaths in Thailand by health region in fiscal year 2024 using Grey System Theory. Data was collected to develop the model from the statistics report on the number of neonates who died less than or equal to 28 days after birth from the fiscal year 2014 to 2024 from the Ministry of Public Health (processing date: March 9, 2024). The results showed that the GM (1,1) models had a development coefficient (a) of nine health regions between , the models were suitable for short-term forecasts. The improved GM (1,1) expanded with a periodic correction model had a lower mean absolute percentage error (MAPE) than the GM (1,1) model in every health region. The MAPE in all health region was less than 10 in the criteria for high accuracy, except for 1, 8, and 13, which were between 10 and 20 in the good prediction criteria. Predicting the number of neonatal deaths in the fiscal year 2024, every health region decreased from the fiscal year 2023, except health region 8, 10, and 11, which increased by 3.89, 6.97, and 6.80, respectively. The proportion of the number of neonatal deaths for fiscal year 2024 (processed only up to March 9, 2024) as a percentage of the predicted value in every health region was less than 43.99 percent, of which the proportion by the number of days in fiscal year 2024, except health region 1, 3, 6, and 12, accounted for 57.65, 46.54, 46.03, and 49.20 percent, respectively.

References

World Population Review. Infant Mortality Rate by Country 2024 [Internet]. [cited 2024 March 18]. Available from: https://worldpopulationreview.com/country-rankings/infant-mortality-rate-by-country

United Nations International Children's Emergency Fund. UNICEF Data Warehouse Cross-sector indicators Indicator: Infant mortality rate Unit of measure: Deaths per 1,000 live births [Internet]. [cited 2024 Mar 20]. Available from: https://data.unicef.org/resources/data_explorer/unicef_f/?ag=UNICEF&df=GLOBAL_DATAFLOW&ver=1.0&dq=THA&startPeriod=2017&endPeriod=2022

Talirongan FJB, Talirongan H, Orong MY. Modeling National Trends on Health in the Philippines Using ARIMA. Journal of Health & Medical Informatics 2020;1:1-6.

Hasan NI, Abdul Aziz A, Ganggayah MD, Jamal NF, Ghafar NMA. Projection of infant mortality rate in Malaysia using R. Jurnal Sains Kesihatan Malaysia 2022;20:23-36.

Jo TC. The effect of virtual term generation on the neural based approaches to time series prediction. Proceedings of the 4th International Conference on Control and Automation; 2023 Jun 12; Montreal, Canada. Montreal; IEEE; 2023. 516–20.

Deng J. Introduction to Grey System Theory. The journal of Grey System 1989,1(1),1-24.

Kayacan E, Ulutas B, Kaynak O. Grey system theory-based models in time series prediction. Expert Systems with Applications 2010;37(2): 1784-89.

Guo Z, Song X, Ye J. A Verhulst model on time series error corrected for port throughput forecasting. Journal of the Eastern Asia Society for Transportation Studies 2005;6:881-91

Tu CJ, Pan Q, Jiang CM, Tu YX, Zhang SH. Trends and predictions in the physical shape of Chinese preschool children from 2000 to 2020. Front Public Health 2023;11:1148415.

Liu SF. Editorial: memorabilia of the establishment and development of grey system theory (1982-2021). Grey Syst. 2002; 12: 701–2. doi: 10.1108/GS-10-2022-188.

Zhang H. Prediction of Infant Mortality Rate in Shanghai Based on GM(1,1) Model. Advances in Applied Mathematics 2021;10(11):3679-86.

กระทรวงสาธารณสุข. กลุ่มรายงานมาตรฐาน สาเหตุการป่วย/ตาย อัตราตายทารกแรกเกิด อายุน้อยกว่าหรือเท่ากับ 28 วัน [อินเตอร์เน็ต]. [สืบค้นเมื่อ 18 มีนาคม 2567]. แหล่งข้อมูล: https://hdcservice.moph.go.th/hdc/reports/report.php?&cat_id=491672679818600345dc1833920051b2&id=0acbbb84a5c774c129dfc849a742d766#

Xie N. A summary of grey forecasting models. Grey Systems: Theory and Application 2022;12(4):703-22.

Liu SF, Lin Y. Grey systems theory and applications. Berlin: Springer-Verlag; 2010.

Zhao D, Zhang H, Cao, Q, Wang, Z, He, S, Zhou, M. and Zhang, R. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. PLoS One 2022;17(2):e0262734.

MLPills. Error metrics for time series forecasting [Internet]. [cited 2024 March 18]. Available from: https://mlpills.dev/time-series/error-metrics-for-time-series-forecasting/

Lewis CD. Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. London: Butterworth; 1982.

ศูนย์ส่งเสริมจริยธรรมการวิจัย, มหาวิทยาลัยมหิดล. แบบประเมินตนเองเข้าข่ายการวิจัยในคนหรือไม่ (Eng, Thai) [อินเตอร์เน็ต]. [สืบค้นเมื่อ 10 เมษายน 2567]. แหล่งข้อมูล: https://sp.mahidol.ac.th/th/ethics-human/forms/checklist/2022-Human%20Research%20Checklist-researcher.pdf

United Nations International Children's Emergency Fund. Neonatal mortality [Internet]. [cited 2024 Mar 20]. Available from: https://data.unicef.org/topic/child-survival/neonatal-mortality/

Leung XY, Islam RM, Adhami M, Ilic D, McDonald L, Palawaththa S, et al. A systematic review of dengue outbreak prediction models: Current scenario and future directions. PLoS Negl Trop Dis. 2023;1 7(2):e0010

Downloads

Published

2024-07-04

How to Cite

Rattanahon, J. ., & Jayathavaj, V. (2024). Predicting the number of neonatal deaths in Thailand using grey system theory . Journal of Medicine and Public Health, Ubon Ratchathani University, 7(2), 154–163. Retrieved from https://he01.tci-thaijo.org/index.php/jmpubu/article/view/270434

Issue

Section

Research Articles