Characteristics of particulate matter emissions from a ten-year-old diesel pickup truck in laboratory driving simulations
Keywords:
Particulate matter, PM2.5, Particulate emissions from diesel pick-up truck engines, Particulate matter concentration, Driving simulationAbstract
This study aimed to investigate the emissions of particulate matter (PM) from the combustion of a 10-year-old diesel pickup truck under simulated driving conditions of urban and extra-urban cycles according to the United Nations Regulation 83 (UN R83) standard. The real-time monitoring of PM concentrations was measured using a Portable Aerosol Spectrometer Dust Detector (PAS, GRIMM model 11D) for TSP, PM10, PM4, PM2.5, PM1, inhalable dust, thoracic dust, and respirable dust. The results showed that driving in urban and extra-urban conditions released high average concentrations of TSP (46.72 µg/m³ and 43.05 µg/m³, respectively) and inhalable dust (46.25 µg/m³ and 41.93 µg/m³, respectively). Most of the PM concentration emitted during both driving conditions increased when accelerating driving speeds and decreased when decelerating driving speeds. However, during a deceleration step of 100-0 km/h in extra-urban conditions, the concentrations of TSP, Inhalable dust, and Thoracic dust slightly increased. It may result from particle accumulations in the exhaust system and the PMs are released during deceleration. Although the concentration comparison showed no significant difference between urban and extra-urban conditions, driving patterns with frequently abrupt speed changes led to an inefficient engine operation, causing higher PM emissions. Therefore, reducing driving behavior with sudden and frequent speed changes, improving the traffic system, and efficiently planning traffic routes can reduce the release of PM emissions from vehicles into the atmosphere.
References
Chuersuwan N, Nimrat S, Lekphet S, Kerdkumrai T. Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region. Environment international. 2008 Jul 1;34:671–7.
จุฬาลงกรณ์มหาวิทยาลัย. เรียนรู้อยู่กับฝุ่น PM2.5. [อินเทอร์เน็ต]. 2562. [สืบค้นเมื่อ 28 กุมภาพันธ์ 2566]. แหล่งข้อมูล: https://www.chula.ac.th/wp-content/uploads/2019/10/Chula-PM25.pdf
Raza M, Chen L, Leach F, Ding S. A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques. Energies. 2018 Jun 1;6.
American Lung Association. Health Impact of Pollution | State of the Air [Internet]. 2022 [cited 2023 Jan 18]. Available from: https://www.lung.org/research/sota/health-risks
Deng X, Feng N, Zheng M, Ye X, Lin H, Yu X, et al. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim Biophys Acta Gen Subj. 2017 Feb;1861(2):112–25.
IARC. IARC: DIESEL ENGINE EXHAUST CARCINOGENIC [Internet]. 2012 [cited 2023 Jan 26]. Available from: https://www.iarc.who.int/wp-content/uploads/2018/07/pr213_E.pdf
US EPA O. Health and Environmental Effects of Particulate Matter (PM) [Internet]. 2016 [cited 2023 Jan 17]. Available from: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm
ชนกนันท์ ก. ปัจจัยที่มีอิทธิพลต่อการตัดสินใจซื้อรถกระบะดัดแปลง PPV ของผู้บริโภคในเขตกรุงเทพมหานคร. [อินเทอร์เน็ต] 21 มกราคม 2060 [สืบค้นเมื่อ 8 มีนาคม 2566]. แหล่งข้อมูล: https://ethesisarchive.library.tu.ac.th/thesis/2016/TU_2016_5807011167_6755_5210.pdf
Punyaroj S. พฤติกรรมของผู้บริโภคในการเลือกซื้อและใช้รถยนต์กระบะ ในกลุ่มจังหวัดภาคเหนือตอนล่าง. วารสารการวิจัยกาสะลองคำ มหาวิทยาลัยราชภัฏเชียงราย. 2017;11(3):305–15.
กรมการขนส่งทางบก. กลุ่มสถิติการขนส่ง กองแผนงาน กรมการขนส่งทางบก [อินเทอร์เน็ต]. 2565 [สืบค้นเมื่อ 21 มีนาคม 2566]. แหล่งข้อมูล https://web.dlt.go.th/statistics/
Supasri T, Gheewala S, Macatangay R, Chakpor A, Sedpho S. Association between ambient air particulate matter and human health impacts in northern Thailand. Scientific Reports. 2023 Aug 7;13.
Guttikunda SK, Mohan D. Re-fueling road transport for better air quality in India. Energy Policy. 2014 May 1;68:556–61.
Singh V, Biswal A, Kesarkar AP, Mor S, Ravindra K. High resolution vehicular PM10 emissions over megacity Delhi: Relative contributions of exhaust and non-exhaust sources. Science of The Total Environment. 2020 Jan 10;699:134273.
Weber C, Sundvor I, Figenbaum E. Comparison of regulated emission factors of Euro 6 LDV in Nordic temperatures and cold start conditions: Diesel- and gasoline direct-injection. Atmospheric Environment. 2019 Jun 1;206:208–17.
Yoann B, Tim D, Kaylin L, Isabel R, Uwe T. Evaluation of real-world vehicle emissions in Brussels. The Real Urban Emissions Initiative [Internet]. 2021 Nov [cited 2024 Mar 8]; Available from: https://www.trueinitiative.org/data/publications/evaluation-of-real-world-vehicle-emissions-in-brussels
Giechaskiel B. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory. International Journal of Environmental Research and Public Health. 2018 Feb;15(2):304.
Jung S, Lim J, Kwon S, Jeon S, Kim J, Lee J, et al. Characterization of particulate matter from diesel passenger cars tested on chassis dynamometers. Journal of Environmental Sciences. 2017 Apr 1;54:21–32.
Peckham M, Finch A, Price P, Davies M. Study of Particle Number Emissions from a Turbocharged Gasoline Direct Injection (GDI) Engine Including Data from a Fast-Response Particle Size Spectrometer. SAE Technical Papers. 2011 Apr 12;
Bermúdez V, Luján JM, Ruiz S, Campos D, Linares WG. New European Driving Cycle assessment by means of particle size distributions in a light-duty diesel engine fuelled with different fuel formulations. Fuel. 2015 Jan 15;140:649–59.
Yang HH, Dhital NB, Wang LC, Hsieh YS, Lee KT, Hsu YT, et al. Chemical Characterization of Fine Particulate Matter in Gasoline and Diesel Vehicle Exhaust. Aerosol Air Qual Res. 2019;19(6):1349–449.
UN. UN R83 [Internet]. UNITED NATIONS; 2015 [cited 2023 Jan 27]. Available from: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/R083r5e.pdf
Jankowska E. Mass and Number Concentration and Size Distribution of Particles Emitted from Diesel Engine. IJTEE. 2010 Dec 15;3(2):109–12.
Kumar A, Srivastava D, Agrawal M, Goel A. Snapshot of PM Loads Evaluated at Major Road and Railway Intersections in an Urban Locality. International Journal of Environmental Protection. 2014;4.
ส่วนสถานตรวจสภาพรถสำนักวิศวกรรมยานยนต์กรมการขนส่งทางบก. คู่มือการปฏิบัติงานสำหรับสถานตรวจสภาพรถ [อินเทอร์เน็ต]. 2561 [สืบค้นเมื่อ 14 มกราคม 2565]. . แหล่งข้อมูล: http://www.sahavit.com/inspection/Downloads/การปฎิบัติงานสำหรับสถานตรวจสถาพรถ1.pdf
OSHA. OSHA Technical Manual (OTM) - Section II: Chapter 1 | Occupational Safety and Health Administration [Internet]. 2023 [cited 2024 Mar 23]. Available from: https://www.osha.gov/otm/section-2-health-hazards/chapter-1
Wang S, Zhu X, Somers LMT, de Goey LPH. Effects of exhaust gas recirculation at various loads on diesel engine performance and exhaust particle size distribution using four blends with a research octane number of 70 and diesel. Energy Conversion and Management. 2017 Oct 1;149:918–27.
Peckham M, Finch A. Analysis of Transient HC, CO, NOx and CO2 Emissions from a GDI Engine using Fast Response Gas Analyzers. SAE International Journal of Engines. 2011 Jun 15;4:1513–22.
Kim J, Choi K, Myung CL, Lee Y, Park S. Comparative investigation of regulated emissions and nano-particle characteristics of light duty vehicles using various fuels for the FTP-75 and the NEDC mode. Fuel. 2013 Apr 1;106:335–43.
Shen X, Shi Y, Kong L, Cao X, Li X, Wu B, et al. Particle number emissions from light-duty gasoline vehicles in Beijing, China. Science of The Total Environment. 2021 Jun 15;773:145663.
Yue DL, Hu M, Wang ZB, Wen MT, Guo S, Zhong LJ, et al. Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD region, China. Atmospheric Environment. 2013 Sep 1;76:181–8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 วารสารการแพทย์และสาธารณสุข มหาวิทยาลัยอุบลราชธานี
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารการแพทย์และสาธารณสุข มหาวิทยาลัยอุบลราชธานี ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารการแพทย์และสาธารณสุข มหาวิทยาลัยอุบลราชธานี ถือเป็นลิขสิทธิ์ของวารสารการแพทย์และสาธารณสุข มหาวิทยาลัยอุบลราชธานี กองบรรณาธิการไม่สงวนสิทธิ์ในการคัดลอกเพื่อการพัฒนางานด้านวิชาการ แต่ต้องได้รับการอ้างอิงที่ถูกต้องเหมาะสม