Transmission, Detection and Disinfection of Coronavirus Disease 2019 in Water Sources

Authors

  • Sitthichai Chaikhan Public Health Sub Division, College of Medicine and Public Health, Ubon Ratchathani University
  • Somjate Thongdamrongtham Public Health Sub Division, College of Medicine and Public Health, Ubon Ratchathani University
  • Supanee Junsiri Public Health Sub Division, College of Medicine and Public Health, Ubon Ratchathani University

Keywords:

Health, Covid-19, SAR-CoV-2, Disinfection, Surveillance

Abstract

After further studying the SARS-CoV-2 virus and observing a decreasing trend in its spread, there is still an ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) in Thailand, especially during significant festivals such as the Songkran Festival of the year 2567. During this festival, 1,004 COVID-19 patients were hospitalized, averaging 143 daily cases. This article presents an examination of the transmission of the SARS-CoV-2 virus in water sources and describes methods for detecting and eliminating the virus in water. The virus can persist in untreated water at 23°C for 2-4 days. Contaminated water used for drinking or direct contact can lead to COVID-19 infection. Studies have found that communities lacking public resources have higher rates of SARS-CoV-2 infection than the general population. Wastewater from communities can contain genetic material of the SARS-CoV-2 virus at concentrations ranging from 0.33 to 149.90 copies/L/person. Quantitative PCR (qPCR) remains popular for detecting SARS-CoV-2 in water to measure RNA quantities of the virus. Common methods to kill the SARS-CoV-2 virus in water accessible to the general public include boiling water at a minimum temperature of 65°C for 30 minutes or boiling it at 100°C for 1 minute. Chemicals such as strong chlorine-based agents like concentrated hydrochloric acid (HClO2) at 0.41-0.74 mg/L, with just 1 minute of contact time, or sodium hypochlorite (NaOCl) at a concentration of 0.54 mg/L, can destroy the virus in water by up to 99%. Therefore, vigilance to prevent and control the spread of the disease remains crucial.

References

Li X, Luk H, Lau S, Woo P. Human coronavirus: General features. Biomedical Sciences 2019; B978-0-12-801238-3.95704-0.

World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it [Internet]. [cited 2023 Feb 26]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it

Lau H, Khosrawipour V, Kocbach P, Mikolajczyk A, Schubert J, Bania J, Khosrawipour T. The Positive Impact of Lockdown in Wuhan on Containing the COVID-19 Outbreak in China. J. Travel Med 2020; 27(3):1-7.

Roux J, Massonnaud C, Crépey P. COVID-19: One-Month Impact of the French Lockdown on the Epidemic Burden. medRxiv 2020; 20075705:1-29.

Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, Rinaldo A. Spread and Dynamics of the COVID-19 Epidemic in Italy: Effects of Emergency Containment Measures. Proc Natl Acad Sci USA 2020; 117(19):10484-10491.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798):270-273.

Jee Y. WHO International Health Regulations Emergency Committee for the COVID-19 outbreak. Epidemiology and health 2020; 19(42):1-4.

Jangra S, Gill PS, Singh D, Sharma S, Bhatia S, Nandal K. Persistence and Prevalence of Clinical Symptoms in SARS-CoV-2 infected patients. Res J Pharm Technol 2023; 16(3):1428–32.

World Health Organization. Number of COVID-19 cases reported to WHO (cumulative total) World [Internet]. [cited 2024 Apr 24]. Available from: https://data.who.int/dashboards/covid19/cases

สำนักสื่อสารความเสี่ยงและพัฒนาพฤติกรรมสุขภาพ. กรมควบคุมโรค เผย 3 โรคระบาด ที่คาดว่าจะเกิดขึ้นในปี 2567 พร้อมเตรียมรับมือและ เน้นย้ำมาตรการป้องกันอย่างเคร่งครัด [อินเตอร์เนต]. [สืบค้นเมื่อวันที่ 20 เมษายน 2567]. แหล่งข้อมูล https://ddc.moph.go.th/brc/news.php?news=39881&deptcode=brc

Centers for Disease Control and Prevention. How Coronavirus Spreads | CDC [Internet]. [cited 2023 Feb 26]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html

Gundy PM, Gerba CP, Pepper IL. Survival of Coronaviruses in Water and Wastewater. Food Environ Virol 2009; 1(1):10–4.

Lu Z, Brunton AE, Mohebnasab M, Deloney A, Williamson KJ, Layton BA, et al. Community-Based SARS-CoV-2 Testing Using Saliva or Nasopharyngeal Swabs to Compare the Performance of Weekly COVID-19 Screening to Wastewater SARS-CoV-2 Signals. ACS ES and T Water 2022; 2(10):1667–77.

Smith T, Holm RH, Keith RJ, Amraotkar AR, Alvarado CR, Banecki K, et al. Quantifying the relationship between sub-population wastewater samples and community-wide SARS-CoV-2 seroprevalence. Sci Total Environ 2022; 853:158567.

Leshan Wannigama D, Amarasiri M, Hurst C, Phattharapornjaroen P, Abe S, Hongsing P, et al. Tracking COVID-19 with wastewater to understand asymptomatic transmission. International Journal of Infectious Diseases 2021; 108:296–9.

Tangwangvivat R, Wacharapluesadee S, Pinyopornpanish P, Petcharat S, Hearn SM, Thippamom N, et al. SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region. Viruses 2023; 15(4):876.

Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA., Haramoto E, & Rose JB. SARS-CoV-2 in wastewater: state of the knowledge and research needs. In Science of the Total Environment 2020; 739:139076.

Street R, Malema S, Mahlangeni N, Mathee A. Wastewater surveillance for Covid-19: an African perspective. Sci Total Environ. 2020; 2020; 743: 140719.

Platto S, Zhou J, Wang Y, Wang H, Carafoli E. Biodiversity loss and COVID-19 pandemic: the role of bats in the origin and the spreading of the disease. Biochem Biophys Res Commun 2020; 538: 2-13.

Girón-Navarro R, Linares-Hernández I, Castillo-Suárez LA. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. Environ Sci Pollut Res Int 2021; 28(38):52651-52674.

Belete TM. A review on promising vaccine development progress for COVID-19 disease. Vacunas (English Edition) 2020; 21(2):121–28.

Manigandan S, Wu MT, Ponnusamy VK, Raghavendra VB, Pugazhendhi A, Brindhadevi K. A systematic review on recent trends in transmission, diagnosis, prevention and imaging features of COVID-19 2020; 98:233–240.

Adelodun B, Ajibade FO, Ibrahim RG, Bakare HO, Choi K-S. Snowballing transmission of COVID-19 (SARS-CoV-2) through wastewater: any sustainable preventive measures to curtail the scourge in low-income countries? Sci Total Environ. 2020; 742(7):140680.

Kallem P, Hegab H, Alsafar H, Hasan SW, Banat F. SARS-CoV-2 detection and inactivation in water and wastewater: review on analytical methods, limitations and future research recommendations. Emerg Microbes Infect 2023; 12(2):2222850.

Bhowmick GD, Dhar D, Nath D, Ghangrekar MM, Banerjee R, Das S, Chatterjee J. Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. Npj Clean Water. 2020; 3(1):32.

Gwenzi W. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. Sci Total Environ. 2021; 753:141751.

World Health Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: Interim guidance [Internet]. [cited 2023 March 16]. Available from: https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf?sequence=1&isAllowed

Sivakumar B. COVID-19 and water. Stoch Env Res Risk 2021; 35(3): 531-34.

Maxeiner S, Krasteva-Christ G, Althaus M. Pitfalls of using sequence databases for heterologous expression studies – a technical review. J Physiol 2023; 601(9):1611–23.

Borland EM, Hartman DA, Hopken MW, Piaggio AJ, Kading RC. Technical Limitations Associated With Molecular Barcoding of Arthropod Bloodmeals Taken From North American Deer Species. J Med Entomol 2020; 57(6):2002–2006.

Kuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One 2018 ;13(5):e0196438.

Pipelers P, Clement L, Vynck M, Hellemans J, Vandesompele J, Thas O. A unified censored normal regression model for qPCR differential gene expression analysis. PLoS One 2017; 12(8): :e0182832.

Food and Drug Administration. FDA Emergency Use Authorized COVID-19 Antigen Tests [Internet]. [cited 2023 March 16]. Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs

Alvarez E, Bielska IA, Hopkins S, Belal AA, Goldstein DM, Slick J, et al. Limitations of COVID-19 testing and case data for evidence-informed health policy and practice. Health Res Policy Syst 2023; 21(1):11.

Mills W, Horney JA, Ladman B. Standing up testing. In: Horney J, editors. The COVID-19 response: the vital role of the public health professional. Academic Press; 2022. 53-68. https://doi.org/10.1016/C2021-0-01543-1

Del Vecchio C, Cracknell Daniels B, Brancaccio G, Brazzale AR, Lavezzo E, Ciavarella C, et al. Impact of antigen test target failure and testing strategies on the transmission of SARS-CoV-2 variants. Nat Commun 2022; 13(1):5870.

Kheiroddin P, Borchers N, Cibali E, Würfel T, Nowosadtko S, Kabesch M, et al. SARS-CoV-2 Detection Limits in Swab and Gargle Samples by Comparing Antigen and RT-qPCR Testing. COVID 2022; 2(6):752–58.

Amraotkar AR, Keith RJ, Palmer KE, Bhatnagar A. Using SARS-CoV-2 Antibody Testing in COVID-19 Research. Am J Med 2023; 136(6):501–03.

Fitzgerald ES, Jamieson AM. Comment on “SARS-CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung.” Elife 2022; 11;11:e74268.

Srivastava P, Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023;13(6): 200.

Raddatz BW, Rabello FJ, Benedetti R, Steil GJ, Imamura LM, Kim EYS, et al. Clinical Validation of a Colorimetric Loop-Mediated Isothermal Amplification Using a Portable Device for the Rapid Detection of SARS-CoV-2. Diagnostics 2023; 13(7):1355.

Reyes Morales R, Segundo Ibañez P, Flores de Los Ángeles C, Vizcarra Ramos D, Ibañez Galeana D, Salas Cuevas G, et al. Reverse transcription loop mediated isothermal amplification has a high performance in the detection of SARS CoV 2 in saliva samples and nasal swabs from asymptomatic and symptomatic individuals. Exp Ther Med 2023; 26(2):398.

Celis JE, Espejo W, Paredes-Osses E, Contreras SA, Chiang G, Bahamonde P. Plastic residues produced with confirmatory testing for COVID-19: classification, quantification, fate, and impacts on human health. Sci Total Environ 2021; 760:144167.

Ko HY, Li YT, Li YY, Chiang MT, Lee YL, Liu WC, et al. Optimization and Improvement of qPCR Detection Sensitivity of SARS-CoV-2 in Saliva. Microbiol Spectr 2023; 11(3):e04640-22.

Linkowska K, Bogiel T, Lamperska K, Marszałek A, Starzyński J, Szylberg Ł, et al. Commercially available SARS-CoV-2 RT-qPCR diagnostic tests need obligatory internal validation. Sci Rep 2023 ;13(1):6991.

Jiang F, Liu B, Yue Y, Tao Y, Xiao Z, Li M, et al. Direct Quantitation of SARS-CoV-2 Virus in Urban Ambient Air via a Continuous-Flow Electrochemical Bioassay. Advanced Science 2023; 10(22):2301222.

Alhamid G, Tombuloglu H, Rabaan AA, Al-Suhaimi E. SARS-CoV-2 detection methods: A comprehensive review. Saudi J Biol Sci 2022; 29(11):103465.

เยาวรักษ์ จูตระกูล. การประเมินความถูกต้อง ความไวและความจำเพาะของการตรวจ SARS-CoV-2 Antigen ด้วยชุดทดสอบแบบรวดเร็ว Rapid Antigen test และ Self-Antigen Test Kit, โรงพยาบาลอุดรธานี. วารสารการแพทย์โรงพยาบาลอุดรธานี 2566; 31(1):42–50.

กรมควบคุมโรค. กรมควบคุมโรค ชี้สถานการณ์โควิดเพิ่มขึ้นตามที่คาดการณ์ สายพันธุ์ไม่เปลี่ยนอาการคล้ายหวัดแนะกลุ่มเสี่ยงระมัดระวัง [อินเตอร์เนต]. [สืบค้นเมื่อวันที่ 20 เมษายน 2567]. แหล่งข้อมูล https://ddc.moph.go.th/brc/news.php?news=42475&deptcode=brc&news_views=3935.

Kazenelson J, Jefferson T, Rhodes RG, Cahoon LB, Frampton AR. Detection of SARS-CoV-2 RNA in wastewater from an enclosed college campus serves as an early warning surveillance system. PLoS One 2023; 18(7) :e0288808.

Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 2018; 135: 168–86.

Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett 2020; 7(7):511–16.

Centers for Disease Control and Prevention. National Wastewater Surveillance System (NWSS) [Internet]. [cited 2024 March 16]. Available from: https://www.cdc.gov/nwss/wastewater-surveillance.html

Lawal-Ayinde BM, Morita T, Oda K, Nazmul T, Kurose M, Nomura T, et al. Virus purification highlights the high susceptibility of SARS-CoV-2 to a chlorine-based disinfectant, chlorous acid. PLoS One 2023; 18(7) e0288634.

Totaro M, Badalucco F, Costa AL, Tuvo B, Casini B, Privitera G, et al. Effectiveness of Disinfection with Chlorine Dioxide on Respiratory Transmitted, Enteric, and Bloodborne Viruses: A Narrative Synthesis. Pathogens 2021; 10(8):1017.

Kallem P, Hegab H, Alsafar H, Hasan SW, Banat F. SARS-CoV-2 detection and inactivation in water and wastewater: review on analytical methods, limitations and future research recommendations. Emerg Microbes Infect 2023; 12(2):2222850.

Sung Y, Kim D. Inactivation of SARS-CoV-2 in water using ozone. Journal of Environmental Science and Health 2020; 55(11): 1289-1293.

Abraham JP, Plourde BD, Cheng L. Using heat to kill SARS‐CoV‐2. Rev Med Virol 2020; 30(5):e2115.

Liu Y, Chen F, Li L, Chen H. The efficacy of different disinfection methods on SARS-CoV-2 in the air and on surfaces. Journal of Hospital Infection 20202; 104(3):246-251.

Wakid N, Li X. Filtration technologies for removing SARS-CoV-2 from water. Environmental Science and Pollution Research 20202; 27(30):39719-39725.

Lv W, Zheng X, Yang M, Zhang Y, Liu Y, Liu J. Virus removal performance and mechanism of a submerged membrane bioreactor. Process Biochemistry. 2006; 41(2):299–304.

Pendergast MM, Hoek EMV. A review of water treatment membrane nanotechnologies. Energy Environ Sci 2011; 4(6):1946–71.

Bodzek M, Konieczny K, Rajca M. Membranes in water and wastewater disinfection – review. Archives of Environmental Protection. Polish Academy of Sciences 2019; 45:3–18.

Yoon J, Kim J, Lee, H. Inactivation of SARS-CoV-2 in wastewater using ozone and UV-C. Journal of Water Reuse and Desalination 2020; 10(1):1-6.

กรมอนามัย กระทรวงสาธารณสุข. คําแนะนําในการจัดการสุขาภิบาลน้ำบริโภค สําหรับประชาชน ในช่วงการเกิดโรคติดเชื้อไวรัสโคโรน่า 2019 (COVID – 19) [อินเตอร์เน็ต]. [สืบค้นเมื่อ 5 พฤษภาคม 2566]. แหล่งข้อมูล: https://covid19.anamai.moph.go.th/web-upload/2xdccaaf3d7f6ae30ba6ae1459eaf3dd66/m_document/6734/34110/file_download/70e647cbf8000297dbaa1accb39a2347.pdf

Downloads

Published

2024-05-29

How to Cite

Chaikhan, S., Thongdamrongtham, S., & Junsiri, S. (2024). Transmission, Detection and Disinfection of Coronavirus Disease 2019 in Water Sources. Journal of Medicine and Public Health, Ubon Ratchathani University, 7(2), 139–153. Retrieved from https://he01.tci-thaijo.org/index.php/jmpubu/article/view/266310

Issue

Section

Academic Article