Study of factors related road traffic injury in Thaklong Town Municipality, Pathumtani province: A Comparison between before and during COVID-19 pandemic

Main Article Content

Sutanya Wangkeeree
Krit Prasittichok
Chonlawat Chaichan
Wachiraporn Wanichnopparat
Krisada Mahotarn

Abstract

Traffic accidents are the major causes of death and disability, which affect the economy of the whole country. Previous studies showed that during the COVID-19 pandemic, the number of road traffic injuries tended to decrease as the disease control measures were announced. Therefore, this study aimed to compare factors related to traffic injuries in Thaklong municipality, Pathum Thani Province before and during the COVID-19 pandemic. This retrospective analytical study was performed using data collected from the first response unit (FR), Thaklong municipality, Pathum Thani. The results showed 2,676 cases were collected in this study. There were statistically significant differences age, road user, accident patterns, response time, and incident dispatch code before and during the COVID-19 pandemic (p-value<0.05). The results of statistical analysis using univariable logistic regression and multiple logistic regression revealed that people under 20 years old (OR=0.65, 95% CI: 0.50-0.84) were 35% less likely to be injured in a traffic accident during the COVID-19 pandemic compared to those aged 20-39. Furthermore, during the COVID-19 epidemic, the results found that pedestrians/cyclists had 5.91 times greater effect on injuries from traffic accidents (OR=5.19, 95% CI: 2.92-11.95), while motorcycles 1.97 times greater effect on injuries from traffic accidents than four-wheel vehicles (OR=1.97, 95% CI: 1.30-2.80). For the pattern of accidents, vehicle crashes had 1.20 times greater effect on injuries from traffic accidents (OR=1.20, 95% CI: 1.01-1.44) whereas pedestrians hit by vehicles had 2.52 times greater effect on injuries from traffic accidents than in uninvolved accidents (OR=2.52, 95% CI: 1.78-3.56). It is important to noted that the results of this study can be implemented in policy planning for the further announcement to reduce losses of traffic accident in the future.

Article Details

How to Cite
1.
Wangkeeree S, Prasittichok K, Chaichan C, Wanichnopparat W, Mahotarn K. Study of factors related road traffic injury in Thaklong Town Municipality, Pathumtani province: A Comparison between before and during COVID-19 pandemic. IUDCJ [Internet]. 2023 Dec. 19 [cited 2024 Nov. 22];8(2):21-37. Available from: https://he01.tci-thaijo.org/index.php/iudcJ/article/view/263992
Section
Research Articles

References

World Health Organization [Internet]. Geneva: World Health Organization; c2018. Global status report on road safety; 2018 [cited 2022 Oct 29]; [about 1 p.]. Available from: https://www.who.int/publications/i/item/9789241565684

Yakupova G, Polina B, Shepelev V. Identification of factors affecting the road traffic injury rate. Transportation Research Procedia. 2020;50(33):735-42.

Sun H, Wang Q, Zhang P, Zhong Y, Yue X. Spatialtemporal characteristics of tunnel traffic accidents in China from 2001 to present. Advances in Civil Engineering. 2019;2019;1-13.

Subkhian S, Noosorn N. Factors associated with the competency of prevention and control coronavirus disease 2019 among public health personnel in a Singburi Province in health region 4. Journal of Medical and Public Health Region 4. 2023;13(1):56-70.

ศรันยา สีมา. หอสมุดรัฐสภา [อินเทอร์เน็ต]. กรุงเทพฯ: สำนักงานเลขาธิการสภาผู้แทนราษฎร; c2022 [เข้าถึงเมื่อ 25 มกราคม 2566]. เข้าถึงได้จาก: https://library.parliament.go.th/th/radioscript-rr2565-jan3

สำนักงานปลัดกระทรวงคมนาคม [อินเทอร์เน็ต]. กรุงเทพฯ: กระทรวงคมนาคม; 2566. ข้อมูลสถิติการเดินทางบนโครงข่ายคมนาคม ปี 2563 - 2566; 2566 [เข้าถึงเมื่อ 1 กุมภาพันธ์ 2566]; [ประมาณ 1 น.]. เข้าถึงได้จาก: https://datagov.mot.go.th/dataset/covid-19/resource/71a552d0-0fea-4e05-b78c-42d58aa88db6

กรมการขนส่งทางบก, กองแผนงาน กลุ่มสถิติการขนส่ง [อินเทอร์เน็ต]. กรุงเทพฯ: กองแผนงาน; 2564. รายงานสถิติตการขนส่งประจำปี 2563; 2564 [เข้าถึงเมื่อ 16 กุมภาพันธ์ 2566]; [ประมาณ 50 น.]. เข้าถึงได้จาก: https://web.dlt.go.th/statistics/plugins/UploadiFive/uploads/919b93f6017de9725816ff8a3ca51edf4b39835b5b46fd907eb3b031d96cadde.pdf

Amberber N, Howard A, Winters M, Harris MA, Pike I, Machperson A, et al. Road Traffic Injury During the COVID-19 Pandemic: Cured or a Continued Threat?. University of Toronto Journal of Public Health. 2021;2(1):1-7.

Riuttanen A, Ponkilainen V, Kuitunen I, Reito A, Sirola J, Mattila VM. Severely injured patients do not disappear in a pandemic: Incidence and characteristics of severe injuries during COVID-19 lockdown in Finland. Acta orthopaedica. 2021;92(3):249-53.

สำนักอำนวยความปลอดภัย [อินเทอร์เน็ต]. กรุงเทพฯ: กระทรวงคมนาคม; 2565. รายงานประจำปี 2564 อุบัติเหตุจราจรบนทางหลวงแผ่นดิน; 2565 [เข้าถึงเมื่อ 25 มกราคม 2566]; [ประมาณ 97 น.]. เข้าถึงได้จาก: http://bhs.doh.go.th/files/accident/64/report_accident_2564.pdf

Md Isa Z, Ismail NH, Ismail R, Mohd Tamil A, Ja'afar MH, Mat Nasir N, et al. Assessing Factors Associated with Non-Fatal Injuries from Road Traffic Accidents among Malaysian Adults: A Cross-Sectional Analysis of the PURE Malaysia Study. International journal of environmental research and public health. 2022;19(14):1-10.

Roccia F, Iocca O, Sobrero F, Rae E, Laverick S, Carlaw K, et al. World Oral and Maxillofacial Trauma (WORMAT) project: A multicenter prospective analysis of epidemiology and patterns of maxillofacial trauma around the world. Journal of stomatology, oral and maxillofacial surgery. 2022;123(6): e849-e857.

Phonchaipanich P, Prabnasak J. Factors Influencing Number of Deaths Due to Road Crashes in Bangkok: A Comparison between the Situations before and after the Outbreak of Coronavirus Disease 2019. Ladkrabang Engineering Journal. 2022;39(4):1-12.

Hu L, Bao X, Wu H, Wu W. A study on correlation of traffic accident tendency with driver characters using in-depth traffic accident data. Journal of advanced transportation. 2020;2020:1-7.

Sakelliadis EI, Katsos KD, Zouzia EI, Spiliopoulou CA, Tsiodras S. Impact of Covid-19 lockdown on characteristics of autopsy cases in Greece. Comparison between 2019 and 2020. Forensic science international. 2020;313:1-5.

Arun Pathak A, Chandrasekaran S, Annamalai B. Analysis of Motor Vehicle Accidents: Comparison Between Before and During the COVID-19 Lockdown in Maharashtra, India. Transp Res Rec. 2023:2677(4):503-16.

Doucette ML, Tucker A, Auguste ME, Watkins A, Green C, Pereira FE, et al. Initial impact of COVID-19's stay-at-home order on motor vehicle traffic and crash patterns in Connecticut: an interrupted time series analysis. Inj Prev. 2021;27(1):3-9.

Patwary AL, Khattak AJ. Crash harm before and during the COVID-19 pandemic: Evidence for spatial heterogeneity in Tennessee. Accident Analysis and Prevention. 2023;183:1-18.

Doulabi S, Hassan HM. Near-term impact of COVID-19 pandemic on seniors’ crash size and severity. Accident Analysis and Prevention. 2023;185:1-12.

Feizizadeh B, Omarzadeh D, Sharifi A, Rahmani A, Lakes T, Blaschke T. A GIS-based spatiotemporal modelling of urban traffic accidents in Tabriz City during the COVID-19 pandemic. Sustainability. 2022;14(12):1-20.

Alsofayan YM, Alghnam SA, Alkhorisi AM, Almalki HA, Alsaihani MD, Almazroa MA, et al. Epidemiology of Traffic Injuries before, during and 1 Year after the COVID-19 Pandemic Restrictions: National Findings from the Saudi Red Crescent Authority. Saudi Journal of Medicine & Medical Sciences. 2022;10(2):111-6.

Jarvis S, Salottolo K, Berg GM, Carrick M, Caiafa R, Hamilton D, et al. Examining emergency medical services' prehospital transport times for trauma patients during COVID-19. The American Journal of Emergency Medicine. 2021;44:33-7.

Nasser AAH, Nederpelt C, El Hechi M, Mendoza A, Saillant N, Fagenholz P, et al. Every minute counts: The impact of pre-hospital response time and scene time on mortality of penetrating trauma patients. The American Journal of Surgery. 2020;220(1):240-4.