ANALYSIS OF MEDICATION USED PATTERNS IN PATIENTS WITH NEUROLEPTIC MALIGNANT SYNDROME BY ASSOCIATION RULES TECHNIQUE

Authors

  • Chumpoonuch Sukontavaree Somdet Chaopraya Institute of Psychiatry
  • Chanatthida Muangkum Somdet Chaopraya Institute of Psychiatry
  • Pholphat Losatiankij Somdet Chaopraya Institute of Psychiatry

Keywords:

association rule, medication used patterns, neuroleptic malignant syndrome

Abstract

Objective: The purpose of this study was to find out the relationship of the pattern of medication use in schizophrenic patients with Neuroleptic Malignant Syndrome (NMS) by using data mining tasks in term of association rules technique.

Material and Method: This was a retrospective study from data base and inpatients medical records of 9 patients who was diagnosed as Neuroleptic Malignant Syndrome (NMS) according to ICD 10: G21.0 at Somdet Chaopraya Institute of Psychiatry from 1st August 2005 to 31st December 2013. This association rules by Weka program which is a collection of machine learning algorithms for data mining tasks was used to analyze.

Results: 41 schizophrenic patients diagnosed as NMS were identified and most of them were males (58.54%). 5 pattern of frequency used medication pattern were found which were perphenazine and trihexyphenidyl, diazepam and trihexyphenidyl, chlorpromazine and trihexyphenidyl, perphenazine + diazepam and trihexyphenidyl, chlorpromazine and trihexyphenidyl. The most frequency used of medication pattern was perphenazine and trihexyphenidyl (60.9%).

Conclusion: NMS in Somdet Chaopraya Institute of Psychiatry had found 41 patients from 29,792 inpatients (0.14%). In addition, perphenazine and trihexyphenidyl was the most frequency used medication pattern with NMS. However, two items of typical antipsychotic drug group (using this drug group is risk for NMS occurrence) which were perphenazine or chlorpromazine and trihexyphenidyl were used together. Therefore, clinician should be concerned about NMS occurrence, especially using this patterns together.

References

Crismon ML, Argo TR, Buckley PF. Schizophrenia. In Wells BG, editors. Pharmacotherapy a pathopsysiologic approach. 7th ed. China: The McGraw-Hill; 2008: 1099-122.

Sadock BJ, Sadock VA. Kaplan & sadock’s pocket handbook of clinical psychiatry 4th ed. Philadelphia: Lippincott Williams & wilkins; 2005.

Langan J, Martin D, Shajahan P, Smith DJ. Antipsychotic dose escalation as a trigger for neuroleptic malignant syndrome (NMS): literature review and case series report. BMC Psychiatry 2012; 12: 214.

กุลธิดา เมธาวศิน. ความรู้เบื้องต้นเกี่ยวกับการเคลื่อนไหวผิดปกติ: วารสารสมาคมประสาทวิทยาศาสตร์ ภาคตะวันออกเฉียงเหนือ 2556; 8(1): 60-70.

Neuroleptic malignant syndrome. [online]. Available from: http://med.mahidol.ac.th/poisoncenter/th/bulletin/bul96/v4n1/Neuro [2016 Mar 30].

เกษม ตันติผลาชีวะ. Neuroleptic Malignant Syndrome: การศึกษาย้อนหลัง 5 ปี. วารสารสมาคมจิตแพทย์แห่งประเทศไทย 2542; 44(3): 189-200.

ธีระ ลีลานันทกิจ. โรคจิตเภทกับกลุ่มอาการนิวโรเล็กติกที่ร้ายแรง. พิมพ์ครั้งที่ 1. กรุงเทพฯ: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์; 2550.

Su YP, Chang CK, Hayes RD, Harrison S, Lee W, Broadbent M, et al. Retrospective chart review on exposure to psychotropic medications associated with neuroleptic malignant syndrome. Acta Psychiatr Scand 2013.

สมภพ เรืองตระกูล. ตำราจิตเวชศาสตร์. พิมพ์ครั้งที่ 9. กรุงเทพฯ: โรงพิมพ์เรือนแก้วการพิมพ์; 2548.

Sadock BJ, Sadock VA. Concise Textbook of Clinical Psychiatry. 3rd ed. Philadelphia: Lippincott, Williams and Wilkins; 2008.

Stern TA, Fricchione GL, Cassem NH, Jellinek MS, Jerrold FR. Handbook of General Hospital Psychiatry, 6th ed. Philadelphia: Anne Altepeter; 2010.

Taylor D, Paton C, Kapur S. The Maudsley Prescribing Guidelines in Psychiatry. 11th ed. London: Wiley-Blackwell; 2012.

Brian D. Berman, Neuroleptic Malignant Syndrome: A Review for Neurohospitalists 2011.

Chaves R, Gorriz JM, Ramirez J, Illan IA, Salas-Gonzalez D, Gomez-Rio M. Efficient mining of association rules for the early diagnosis of Alzheimer’s disease. Phys Med Biol 2011; 56(18): 6047-63.

Chen Y, et al. Drug Exposure Side Effects from Mining Pregnancy Data. Sigkdd Explorations 2007; 9(1): 22-9.

Tai YM, Chiu HW. Comorbidity study of ADHD: applying association rule mining (ARM) to National Health Insurance Database of Taiwan. Int J Med Inform 2009; 78(12): 75-83.

สายชล สินสมบูรณ์ทอง. การทำเหมืองข้อมูล. กรุงเทพฯ: บริษัทจามจุรีโปรดักส์ จำกัด; 2558.

Downloads

Published

2019-05-11

How to Cite

1.
Sukontavaree C, Muangkum C, Losatiankij P. ANALYSIS OF MEDICATION USED PATTERNS IN PATIENTS WITH NEUROLEPTIC MALIGNANT SYNDROME BY ASSOCIATION RULES TECHNIQUE. วารสารสถาบันจิตเวชศาสตร์สมเด็จเจ้าพระยา [internet]. 2019 May 11 [cited 2025 Dec. 24];11(1):11-23. available from: https://he01.tci-thaijo.org/index.php/journalsomdetchaopraya/article/view/188519

Issue

Section

Original article