Method Validation for Determination of Porcine Parvovirus in Cell Lines used for Vaccine Production by Real-time Polymerase Chain Reaction (Real-time PCR)

Main Article Content

Achira Namjan
Wipawee Wongchana
Sakalin Trisiriwanich

Abstract

Background: Cell lines are crucial for the production of vaccines and other biological products. Detecting adventitious viruses in these cell lines is a critical requirement set by the World Health Organization (WHO) to prevent misidentification and cross-species contamination.


Objectives: This study aimed to develop and validate a method for detecting Porcine parvovirus (PPV) contamination in cell cultures used for vaccine production using Real-time PCR and to implement this method as a standard procedure for quality control of cell cultures in vaccine production.


Methods: This experimental research studied from November 2021 to October 2022 that investigated the optimal conditions for a technique to analyze the quantity of virus from pigs in cell cultures used for vaccine production using Real-time PCR. It also examined the method's accuracy in terms of parameters such as linearity and analytical range, specificity, precision, accuracy, minimum detectable amount, and sensitivity.


Results: The results showed that the designed primers and probes effectively amplified the target genes of PPV without cross-reacting with other viruses. The standard curve demonstrated linearity with a working range between 8 and 4 log10 copies/µl and an R² value exceeding 0.9996. The coefficient of variation (CV) for intra-day, inter-day, and inter-analyst reproducibility was within the acceptable range of less than 25%. Accuracy analysis showed %CV of 0.510% and %recovery ranging from 101.39% to 100.66%. The limit of detection (LOD95%) was established at 1,857 copies/µl. The Real-time PCR assays exhibited high sensitivity, detecting PPV at a concentration of 7.5 TCID50/ml or 4 log10 copies/µl in PPV-infected ST cells.


Conclusions: The findings indicated that the developed method was effective and reliable for detecting Porcine parvovirus in cell lines used for vaccine production.

Article Details

How to Cite
1.
Namjan A, Wongchana W, Trisiriwanich S. Method Validation for Determination of Porcine Parvovirus in Cell Lines used for Vaccine Production by Real-time Polymerase Chain Reaction (Real-time PCR). TFDJ [internet]. 2025 Jul. 8 [cited 2026 Jan. 25];32(2):63-78. available from: https://he01.tci-thaijo.org/index.php/fdajournal/article/view/280881
Section
Research Articles

References

1. Fikrig MK, Tattersall P. Latent parvoviral infection of continuous cell lines. Dev Biol Stand. 1992; 76:285–93. PMID: 1335934.

2. Croghan DL, Matchett A, Koski TA. Isolation of porcine parvovirus from commercial trypsin. Appl Microbiol. 1973 Sep;26(3):431–3. PMID: 4584585.

3. Streck AF, Canal CW, Truyen U. Molecular epidemiology and evolution of porcine parvoviruses. Infection, Genetics and Evol. 2015 Dec;36:300–6. doi:10.1016/j.meegid.2015.08.002.

4. Soares RM, Cortez A, Heinemann MB, Sakamoto SM, Martins VG, Bacci M, et al. Genetic variability of porcine parvovirus isolates revealed by analysis of partial sequences of the structural coding gene VP2. J Gen Virol. 2003 Jun;84(6):1505–15. doi: 10.1099/vir.0.19011-0.

5. Center for Biologics Evaluation and Research. Guidance for Industry-characterization and qualification of cell substrates and other biological materials used in the production of viral vaccines for infectious disease indications [Internet]. Geneva: U.S FDA; 2022 Apr [cited 2022 Apr 22];50. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/characterization-and-qualification-cell-substrates-and-other-biological-materials-used-production

6. European Medicines Agency. Guideline on the use of porcine trypsin used in the manufacture of human biological medicinal products: 8 [Internet]. 2014 Mar [cited 2022 Apr 1]. Available from: https://www.ema.europa.eu/en/use-porcine-trypsin-used-manufacture-human-biological-medicinal-products-scientific-guideline

7. ดวงดาว วิชาดากุล. ชีวสารสนเทศ 1 แนวทางอัลกอริทึม [อินเทอร์เน็ต]. ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย; 2561 [เข้าถึงเมื่อ 24 ก.ค. 2566]. เข้าถึงได้จาก: http://cuir.car.chula.ac.th/handle/123456789/60368

8. Whelan JA, Russell NB, Whelan MA. A method for the absolute quantification of cDNA using real-time PCR. J Immunological Methods. 2003 Jul;278(1–2):261–9. doi: 10.1016/S0022-1759(03)00223-0.

9. Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, et al. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol. 2014 Jun;37(2):115–26. doi:10.1016/j.tifs.2014.03.008.

10. International Organization for Standardization. ISO 20395:2019. Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences — qPCR and dPCR. Geneva: ISO; 2019. Available from: https://www.iso.org/standard/68554.html.

11. Soares RM, Durigon EL, Bersano JG, Richtzenhain LJ. Detection of porcine parvovirus DNA by the polymerase chain reaction assay using primers to the highly conserved nonstructural protein gene, NS-1. J Virol Methods. 1999 Mar;78(1–2):191–8. doi:10.1016/S0166-0934(99)00010-4. PMID: 10204709.

12.Chen HY, Li XK, Cui BA, Wei ZY, Li XS, Wang YB, et al. A TaqMan-based real-time polymerase chain reaction for the detection of porcine parvovirus. J Virol Methods. 2009 Mar;156(1–2):84–8. doi: 10.1016/j.jviromet.2008.12.014.

13. Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 2017 Jun;12:1–6. doi: 10.1016/j.bdq.2017.04.001.

14. Haugland RA, Siefring S, Varma M, Oshima KH, Sivaganesan M, Cao Y, et al. Multi-laboratory survey of qPCR enterococci analysis method performance in U.S. coastal and inland surface waters. J Microbiol Methods. 2016 Apr;123:114–25. doi:10.1016/j.mimet.2016.02.015.

15. Klymus KE, Merkes CM, Allison MJ, Goldberg CS, Helbing CC, Hunter ME, et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ DNA. 2020 Jul;2(3):271–82. doi:10.1002/edn3.29.

16. European Commission. Joint Research Centre. Institute for Health and Consumer Protection. Definition of minimum performance requirements for analytical methods of GMO testing: European Network of GMO Laboratories (ENGL) [Internet]. LU: EU; 2008 [cited 2023 Feb 19]. Available from: https://data.europa.eu/doi/10.2788/65827

17. Wilhelm J. Real-time PCR-based method for the estimation of genome sizes. Nucleic Acids Research. Nucleic Acids Res. 2003 May;31(10):e56. doi: 10.1093/nar/gng056.

18. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous Fluorescence Monitoring of Rapid Cycle DNA Amplification. BioTechniques. 1997 Jan;22(1):130–8. doi: 10.2144/97221bi01.

19. Ni J, Qiao C, Han X, Han T, Kang W, Zi Z, et al. Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China. Virol J. 2014 Dec;11(1):203. doi: 10.1186/s12985-014-0203-2.

20. Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses. 2017 Dec;9(12):393. doi:10.3390/v9120393.