Health Effects of Ambient Air PM2.5, Pathogenesis and Alternative Medicine Treatment

Main Article Content

Banchob Junhasavasdikul
Payong Wanikiat
Amporn Krobthong
Kamon Chaiyasit

Abstract

Ambient pollution and PM2.5 (particulate matter < 2.5 mM) affect the health of people all over the world and are increasing in severity. Many systematic reviews and meta-analyses indicate that both acute and chronic exposure to PM2.5 lead to more risks for many diseases e.g., increasing mortality rate of cardiovascular and respiratory tract diseases, shortened life span, increased blood sugar, HbA1C, dyslipidemia, dermatitis and skin aging, more exacerbation of SLE, rheumatoid arthritis, multiple sclerosis, increased mortality rate of lung cancer and other cancers, increased insulin resistance, hepatitis and NAFLD. The mechanism of diseases caused by ambient pollution and PM2.5 include systemic free radicals in many organs which lead to chronic inflammation via the disbalance of cytokines. Such reactions create toxins like homocysteine and carcinogens to the whole system.  Alternative medicine such as naturopathy and homeopathy can treat such problems by advocating a greater consumption of anti-oxidants and anti-inflamatories, and promoting detoxification of those toxic substances from the body. Using homeopathic remedies can be used for both prophylaxis and treatment. All these integrative medicine modalities are worthy of further research.

Downloads

Download data is not yet available.

Article Details

Section
Review Article

References

1. World Health Organization. Air pollution and health: Summary World Health Organization. 2019; Jan 24. Available from https://www.who.int/airpollution/en/.
2. Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci. 2016;21:65-75.
3. Polivka BJ. The Great London Smog of 1952. Am J Nurs. 2018;118(4):57-61.
4. Schwartz J. What are people dying of on high air pollution days?. Environ Res. 1994;64(1):26-35.
5. Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubell BJ. Estimating the National Public Health Burden associated with exposure to ambient PM2.5 and
Ozone. Risk Analysis. 2012;32(1):81-95.
6. Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, Beelen R, Caracciolo B, de Faire U, Erbel R, Eriksen KT, Fratiglioni L, Galassi C, Hampel R, Heier
M, Hennig F, Hilding A, Hoffmann B, Houthuijs D, Jöckel KH, Korek M, Lanki T, Leander K, Magnusson PK, Migliore E, Ostenson CG, Overvad K, Pedersen NL,
J JP, Penell J, Pershagen G, Pyko A, Raaschou-Nielsen O, Ranzi A, Ricceri F, Sacerdote C, Salomaa V, Swart W, Turunen AW, Vineis P, Weinmayr G, Wolf K, de Hoogh
K, Hoek G, Brunekreef B, Peters A. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ. 2014;348:f7412.
7. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD. Long-term air pollution exposure and cardio respiratory mortality: a review.
Environ Health. 2013;12(1):43-58.
8. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356:447-58.
9. Pope III CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:709-42.
10. Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardialinfarction. Circulation. 2001;103:2810-5.
11. Nowrot TS, Perez L, Kunzli N, Mnstr E, Nemery B. Public health importance of trigger of myocardial infarction: acomparative risk, assessment. Lancet. 2011;377:732-40.
12. Lu F, Xu D, Cheng Y, Dong S, Guo C, Jiang X, Zheng X. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ Res. 2015;136:196-204.
13. Zhang J, Liu Y, Cui LL, Liu SQ, Yin XX, Li HC. Ambient air pollution, Smog episodes and mortality in Junan, China. Sci Rep. 2017;7(1):11209-17.
14. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, Schikowski T, Probst-Hensch NM. Association between ambient pollution and Diabetes Mellitus in Europe and North America: systemic review and meta-analysis. Environmental health perspective. 2015;123(5):381-9.
15. Sasde MY, Kloog I, Liberty IF, Schwartz J, Novack V. The association between air pollution exposure and glucose and lipid levels. J Clin Endocrinol Metab.
2016;101(6):2460-7.
16. Lee S, Park H, Kim S, Lee EK, Lee J, Hong YS, Ha E. Fine particulate matter and incidence of metabolic syndrome in non-CVD patients: a nationwide population-based cohort study. Int J Hyg Environ Health. 2019;222(3):533-40.
17. Ngoc LTN, Park D, Lee Y, Lee YC. Systematic review and Meta-Analysis of human skin diseases due to particulate matter. Int J Environ Res Public Health. 2017;14(12):1458-68.
18. Bernatsky S, Smargiassi A, Johnson M, Kaplan GG, Barnabe C, Svenson L,Brand A, Bertazzon S, Hudson M, Clarke AE, Fortin PR, Edworthy S, Bélisle P, Joseph L. Fine particulate air pollution, nitrogen dioxide, and systemic autoimmune rheumatic disease in Calgary, Alberta. Environ Res. 2015;140:474-8.
19. Zeft AS, Prahalad S, Lefevre S, Clifford B, McNally B, Bohnsack JF, Pope CA 3rd. Juvenile idiopathic arthritis and exposure to fine particulate air pollution. Clin Exp
Rheumatol. 2009;27(5):877-84.
20. Bernatsky S, Smargiassi A, Barnabe C, Svenson LW, Brand A, Martin RV, Hudson M, Clarke AE, Fortin PR, van Donkelaar A, Edworthy S, Bélisle P, Joseph L.. Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces. Environ Res. 2016;146:85-91.
21. Hart JE, Laden F, Puett RC, Costenbader KH, Karlson EW. Exposure to traffic pollution and increased risk of rheumatoid arthritis. Environ Health Perspect. 2009;117(7):1065–9.
22. Oikonen M, Laaksonen M, Laippala P, Oksaranta O, Lilius EM, Lindgren S, Rantio-Lehtimäki A, Anttinen A, Koski K, Erälinna JP. Ambient air quality and occurrence of multiple sclerosis relapse. Neuroepidemiology. 2003;22(1):95-9.
23. Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287(9):1132-41.
24. Laden F, Schwartz J, Speizer FE and Dockery DW. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard six cities study. Am J Respir Crit Care Med. 2006;173:667-72.
25. Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, Vineis P, Forastiere F, Saldiva P, Yorifuji T, Loomis D.. Outdoor particulate matter exposure and lung cancer: a systemic review and meta-analysis. Environmental Health Perspectives. 2014;122(9):906-11.
26. Yeh HL, Hsu SW, Chang YC, Chan TC, Tsou HC, Chang YC, Chiang PH. Spatial analysis of ambient PM2.5 exposure and bladder cancer mortality in Taiwan. Int J
Environ Res Public Health. 2017;14(5):508-22.
27. Tarantino G, Capone D, Finelli C. Exposure to ambient air particulate matter and non-alcoholic fatty liver disease. World J Gastroenterol. 2013;19(25):3951-6.
28. Folkman JK, Risom L, Hansen CS, Loft S, Moller P. Oxidatively damaged DNA and inflammation in the liver of dilipidemic ApoE-/-mice exposed to diesel exhaust
particles. Toxicology. 2007;237:134-44.
29. Tan HH, Fiel MI, Sun Q, Guo J, Gordon RE, Chen LC, Friedman SL, Odin JA, Allina J. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol. 2009;6(4):266-75.
30. Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103(6):1372-9.
31. Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In vitro and In vivo experimental Studies of PM2.5 on disease progression. Int J Environ Res Public Health. 2018;15:1380-1405.
32. Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 2012;15:1-21.
33. Ryu YS, Kang KA, Piao MJ, Ahn MJ, Yi JM, Hyun YM Kim SH, Ko MK, Park CO, Hyun JW. Particulate matter induces inflammatory cytokine production via activation of NFκB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox Biol. 2019;12:101080.
34. Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G, Deng C. Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku J Exp Med. 2016;239:117-25.
35. Lee MS, Eu KD, Fang SC, Rodrigues EG, Modest GA, Christiani DC. Oxidative stress and systemic inflammation as modifiers of cardiac autonomic responses to particulate air pollution. Int J Cardiol. 2014;176:166-70.
36. Wu JZ, Ge DD, Zhou LF, Hou LY, Zhou Y, Li QY. Effects of particulate matter on allergic respiratory diseses. Chronic Diseases and Translational Medicine. 2018;4:95-102.
37. Ozturk AB, Bayraktur R, Gogebakan B, Mumbuc S, Bayram H. Comparision of inflammatory cytokine release from nasal epithelial cells of non-atopic non rhinitic, allergic rhinitic and polyp subjects and effects of diesel exhaust particles in vitro. Allergol Immunopathol (madr). 2017;45:473-81.
38. Alexis NE, Huang YC, Rappold AG, Kehrl H, Devlin R, Peden DB. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter. Am J Respir Crit Care Med. 2014;190:235-7.
39. Chan RC, Wang M, Li N, Yanagawa Y, Onoé K, Lee JJ, Nel AE. Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cells responses involved in T-helper differentiation. J Allergy Clin Immunol. 2006;118:455-65.
40. Brandt EB, Bolcas P, Ruff B, Hershey GKK. Il-33 aignaling contributes to diesel exhaust particles (DEP)-induced asthma exacerbatiobs and recall reponses. J Allergy Clin Immunol. 2017;139:AB81.
41 Becker S, Mundandhara S, Devlin RB, Madden M. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol Appl Pharmacol. 2005:207:269-75.
42. Deng X, Rui W, Zhang F, Ding W. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activatingPIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol. 2013;29:143-57.
43. Jin X; Xue B; Zhou Q; Su R; Li Z. Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure. J Toxicol Sci. 2018;43: 101-11.
44. Deng X, Zhang F, Wang L, Rui W, long F, Zhao Y, Chen D, Ding W. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis. 2014;19:1099-112.
45. Haung Q, Zhang J, Peng S, Tian M, Chen J, Shen S. Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): a proteomic study. J Appl Toxicol. 2014;34:675-87.
46. Wang YH, Lin ZY, Yang LW. PM2.5 exacerbate allergic asthma involved in autophagy signaling pathwayin mice. Int J Clin Exp Pathol. 2016;9:12247-61.
47. Wang YL, Gao W, Li Y, Wang YF. Concentration-dependent effect of PM2.5 mass on expression of adhesion molecules and inflammatory cytokines in nasal mucosa of rats with allergic rhinitis. Eur Arch Otorrhinolaryngol. 2017;274:3221-9.
48. Bourdrel T, Bind MA, Bejot Y, Morel O, Argacha JF. Cardiovascular effects of air pollution. Arch Cardiovasc Dis. 2017;110(11):634-42.
49. Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 2016;8(1):E8-E19.
50. Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN. The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond). 2017;14:78-89.
51. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6-16.
52. Park SK, O’Neill MS, Vokonas PS, Sparrow D, Spiro A 3rd, Tucker KL, Suh H, Hu H, Schwartz J.. Traffic-related particles are associated with elevated homocysteine –the VA Normative Aging Study. Am J Respir Crit Care Med. 2008;178:283-9.
53. Baszczuk A, Kopczynski Z. Hyperhomocysteinemia in patients with cardiovascular disease Postepy Hig Med Dosw (online). 2014;68:579-89.
54. Chen H, Chen X, Hong X, Liu C, Huang H, Wang Q, Chen S, Chen H, Yang K, Sun Q. Maternal exposure to ambient PM2.5 exaggerates fetal cardiovascular maldevelopment induced by homocystein in rats. homocysteine in rats. Environ Toxicol. 2017;32(3):877-89.
55. Harasym J, Oledzki R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition. 2014;30(5):511-7.
56. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T. Berries: improving human health and healthy aging, and promoting quality life--a review. Plant Foods Hum Nutr. 2010;65(3):299-308.
57. Zhu F, Du B, Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: a review. Crit Rev Food Sci Nutr. 2018;24;58(8):1260-70.
58. Nanri A, Moore MA, Kono S. Impact of C-reactive protein on disease risk and its relation to dietary factors. Asain Pac J Cancer Prev. 2007;8(2):167-77.
59. Tong H, Rappold GA, Sanchez DD, Steck ES, Berntsen J, Cascio EW, Delvin BR, Samet MJ. Omega-3 fatty acid supplementation appears to attenuate particulate air pollution–induced cardiac effects and lipid changes in healthy middle-aged adults. Environ Health Perspect. 2012;120(7):952-7.
60. Romieu I, Esteban GR, Sunyer J, Rios C, Zubeldia AM, Velasco RS, and Holguin F. The Effect of Supplementation with Omega-3 Polyunsaturated Fatty Acids on
Markers of Oxidative Stress in Elderly Exposed to PM2.5 . Environ Health Perspect. 2008;116(9):1237-42.
61. Zhong J, Trevisi L, Urch B, Lin X, Speck M, Coull AB, Liss G, Thompson A, Wu S, Wilson A, Koutrakis P, Silverman F, Gold RD, and Baccarelli AA. B-vitamin
Supplementation Mitigates Effects of Fine Particles on Cardiac Autonomic Dysfunction and Inflammation: a Pilot Human Intervention Trial. Sci Rep. 2017;7:45322.
62. Egner P, Chen JG, Zarth AT, Ng D, Wang JB, Kensler KH, Jacobson LP, Muñoz A, Johnson JL, Groopman JD, Fahey JW, Talalay P, Zhu J, Chen TY, Qian GS, Carmella
SG, Hecht SS, Kensler TW. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prevention Research. 2014;7(8):813-23.
63. Arora, S, Arora B. Air pollution: its effects on health & role of homeopathy in air pollution related diseases. Public Health and Homeopathy Awareness (PHHA)
Series[Internet]. 2017 Nov 13. Available from: https://www.researchgate.net/publication/321024761.
64. Junhasavasdikul B, Thirusailam VP. Homeopathy approach for the treatment of ailment from PM2.5. Proceedings of the 1st International Conference on Integrative Medicine for Wellness; 2019 Jun 6-7; Dhurakij Pundit University. Bangkok: 2019. p. 238-42.