Detection of Salmonella Biofilm Formation by Crystal Violet Microtiter Plate Assay

Main Article Content

Piyarat Chitpirom
Budsara Sorypradit
Sakawduen Nasom
Yonlada Tengjongdee

Abstract

Salmonella is an important foodborne pathogen. One factor that affects disease severity is the ability of the organism to form biofilm. Since biofilms can cause antibiotic resistance and make it harder for the immune system to destroy biofilm-forming organisms. This study determined to detect biofilm formation of 100 Salmonella isolated from 50 raw chicken meat samples from 10 fresh markets in Thonburi, Bangkok. Detecting and diagnosing Salmonella in raw chicken meat by standard methods with biochemical test and serological test, and detecting biofilm formation by crystal violet microtiter plate assay. Data were analyzed using descriptive statistics. The study found that 100 Salmonella isolates from raw chicken meat were found to be Salmonella Serogroup A 11%, Serogroup B 23%, Serogroup C 41%, Serogroup D 6%, Serogroup E 19%, and 83 isolates (83%) were found to be able to form biofilm. With strong biofilm producers, moderate biofilm producers, and weak biofilm producers of 24%, 33%, and 26%, respectively. It was found that all isolates of Salmonella Serogroup D formed biofilm. The high prevalence of biofilm formation in the bacteria means that consumers may be at risk if they are infected, and may cause problems in treatment because the bacteria may be resistant to antibiotics used.

Article Details

How to Cite
Chitpirom, P., Sorypradit, B., Nasom, S., & Tengjongdee, Y. (2024). Detection of Salmonella Biofilm Formation by Crystal Violet Microtiter Plate Assay. Thai Journal of Safety and Health, 17(2), 136–148. retrieved from https://he01.tci-thaijo.org/index.php/JSH/article/view/272444
Section
Research Articles

References

กระทรวงสาธารณสุข, กรมวิทยาศาสตร์การแพทย์. (2554). วิธีมาตรฐานสำหรับการวิเคราะห์อาหาร เล่มที่ 1. สำนักงานพระพุทธศาสนาแห่งชาติ.

จีระเดช มาลา. (2551). การเกิดและการควบคุมไบโอฟิล์มของ Salmonella บนพื้นผิวเหล็กสแตนเลส [วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. สำนักการวิจัยแห่งชาติ. https://dric.nrct.go.th/Search/SearchDetail/225350

ภัทรชัย กีรติสิน. (2552). ตำราวิทยาแบคทีเรียการแพทย์ (พิมพ์ครั้งที่ 2). คณะแพทยศาสตร์ศิริราชพยาบาลมหาวิทยาลัยมหิดล.

Abee, T., Kovacs, A. T., Kuipers, O. P., & van der Veen, S. (2011). Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology, 22(2), 172-179. https://doi.org/10.1016/j.copbio.2010.10.016

Agarwal, R. K., Singh, S., Bhilegaonkar, K. N., & Singh, V. P. (2011). Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes. International Food Research Journal, 18(4), 1493-1498.

Antunes, P., Mourao, J., Campos, J., & Peixe, L. (2016). Salmonellosis: the role of poultry meat. Clinical Microbiology and Infection, 22(2), 110-121. https://doi.org/10.1016/j.cmi.2015.12.004

Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L., & Costerton, J. W. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 33(26), 5967–5982. https://doi.org/10.1016/j.biomaterials.2012.05.031

Black, C. E., & Costerton, J. W. (2010). Current Concepts Regarding the Effect of Wound Microbial Ecology and Biofilms on Wound Healing. Surgical Clinics of North America, 90(6), 1147–1160. https://doi.org/10.1016/j.suc.2010.08.009

Chakraborty, S., Roychoudhury, P., Samanta, I., Subudhi, P. K., Lalhruaipuii, L., Das, M., De, A., Bandyopadhayay, S., Joardar, S. N., Mandal, M., Qureshi, A., & Dutta, T. K. (2020). Molecular detection of biofilm, virulence and antimicrobial resistance associated genes of Salmonella serovars isolated from pig and chicken of Mizoram, India. Indian Journal of Animal Research, 54(5), 608-613. https://doi.org/10.18805/ijar.b-3817

Cwiek, K., Korzekwa, K., Tabis, A., Bania, J., Bugla-Płoskonska, G., & Wieliczko, A. (2020). Antimicrobial Resistance and Biofilm Formation Capacity of Salmonella enterica Serovar Enteritidis Strains Isolated from Poultry and Humans in Poland. Pathogens, 9(8), 643. https://doi.org/10.3390/pathogens9080643

Donado-Godoy, P., Clavijo, V., Leon, M., Tafur, M. A., Gonzales, S., Hume, M., Alali, W., Walls, I., Lo Fo Wong, D. M. A., & Doyle, M. P. (2012). Prevalence of Salmonella on Retail Broiler Chicken Meat Carcasses in Colombia. Journal of Food Protection, 75(6), 1134–1138. https://doi.org/10.4315/0362-028x.jfp-11-513

Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, 8(9), 881–890. https://doi.org/10.3201/eid0809.020063

Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the Natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95–108. https://doi.org/10.1038/nrmicro821

Hayrapetyan, H., Muller, L., Tempelaars, M., Abee, T., & Nierop Groot, M. (2015). Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. International Journal of Food Microbiology, 200, 72–79. https://doi.org/10.1016/j.ijfoodmicro.2015.02.005

Jarquin, C., Alvarez, D., Morales, O., Morales, A. J., Lopez, B., Donado, P., Valencia, M. F., Arevalo, A., Munoz, F., Walls, I., Doyle, M. P., & Alali, W. Q. (2015). Salmonella on Raw Poultry in Retail Markets in Guatemala: Levels, Antibiotic Susceptibility, and Serovar Distribution. Journal of Food Protection, 78(9), 1642–1650. https://doi.org/10.4315/0362-028x.jfp-15-117

Kline, T., Bowman, J., Iglewski, B. H., de Kievit, T., Kakai, Y., & Passador, L. (1999). Novel synthetic analogs of the Pseudomonas autoinducer. Bioorganic & Medicinal Chemistry Letters, 9(24), 3447–3452. https://doi.org/10.1016/s0960-894x(99)00626-5

Pompermayer, D. M. C., & Gaylarde, C. C. (2000). The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and Escherichia coli to polypropylene. Food Microbiology, 17(4), 361-365. https://doi.org/10.1006/fmic.1999.0291

Rachid, S., Ohlsen, K., Witte, W., Hacker, J., & Ziebuhr, W. (2000). Effect of Subinhibitory Antibiotic Concentrations on Polysaccharide Intercellular Adhesin Expression in Biofilm-Forming Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 44(12), 3357–3363. https://doi.org/10.1128/aac.44.12.3357-3363.2000

Sereno, M., Ziech, R., Druziani, J., Pereira, J., & Bersot, L. (2017). Antimicrobial Susceptibility and Biofilm Production by Salmonella sp. Strains Isolated from Frozen Poultry Carcasses. Revista Brasileira de Ciencia Avicola, 19(1), 103–108. https://doi.org/10.1590/1806-9061-2016-0268

Shukla, S. K., & Rao, T. S. (2017, January 13). An Improved Crystal Violet Assay for Biofilm Quantification in 96-Well Microtitre Plate. Cold Apring Harbor Laboratory, https://doi.org/10.1101/100214.

Singh, P. R., Bajaj, H., Benz, R., Winterhalter, M., & Mahendran, K. R. (2015). Transport across the outer membrane porin of mycolic acid containing actinomycetales: Nocardia farcinica. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(2), 654–661. https://doi.org/10.1016/j.bbamem.2014.11.020

Steenackers, H., Hermans, K., Vanderleyden, J., & De Keersmaecker, S. C. J. (2012). Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Research International, 45(2), 502–531. https://doi.org/10.1016/j.foodres.2011.01.038

Trampari, E., Holden, E. R., Wickham, G. J., Ravi, A., Martins, L. de O., Savva, G. M., & Webber, M. A. (2021). Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. Npj Biofilms and Microbiomes, 7(1). https://doi.org/10.1038/s41522-020-00178-0

von Eiff, C., Jansen, B., Kohnen, W., & Becker, K. (2005). Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs, 65(2), 179–214. https://doi.org/10.2165/00003495-200565020-00003

Wang, H., Sodagari, M., Chen, Y., He, X., Newby, B. Z., & Ju, L. K. (2011). Initial bacterial attachment in slow flowing systems: Effects of cell and substrate surface properties. Colloids and Surfaces B: Biointerfaces, 87(2), 415–422. https://doi.org/10.1016/j.colsurfb.2011.05.053

Wang, H., Sodagari, M., Ju, L. K., & Newby, B. Z. (2013). Effects of shear on initial bacterial attachment in slow flowing systems. Colloids and Surfaces B: Biointerfaces, 109, 32–39. https://doi.org/10.1016/j.colsurfb.2013.03.016

Watnick, P., & Kolter, R. (2000). Biofilm, City of Microbes. Journal of Bacteriology, 182(10), 2675–2679. https://doi.org/10.1128/jb.182.10.2675-2679.2000