Effects on maximum oxygen uptake and muscular strength during an interval training program for people working within confined spaces

Main Article Content

วิรัตน์ สนธิ์จันทร์
เอนก สูตรมงคล


Objectives  To study the effects on maximum oxygen uptake and muscular strength during an interval training program at 70 – 75 percent maximum heart rate (MHR) .

Methods  A sample group of twenty-eight volunteers (all Bangpakong Power Plant workers with duties requiring them to work within confined spaces), participated in this study.  The interval training program exerted the subjects for three minutes at 70 -- 75 % MHR, with three-minute recovery periods at heart rates under 50 % MHR.  The interval training program took place three days a week for an eight-week training period.  The participants trained in 5 sets for the first four weeks (thirty minutes per day), and 6 sets in the last four weeks (thirty-six minutes per day).  The Astrand-Rhyming test and Grip and Leg strength tests were used to measure maximum oxygen uptake (VO2max) and muscular strength, respectively.             A dependent t-test was utilized for pre-training and post-training data analysis, with the significance level set at 0.05.

Results  The results showed that after 8 weeks of interval training, the maximum oxygen uptake rates revealed statistically significant increases from 26.72 (SD 5.88) to 30.66 (SD 6.16) ml/kg-1/min-1.   Additionally, measurements of muscular strength showed statistically significant increases from 1.77 (SD 0.58) to 2.25 (SD 0.53) kg-1/weight (for leg strength).

Conclusion  It was found that after 8 weeks of the interval training program at 70 – 75 % maximum heart rate, maximum oxygen uptake and muscular strength in people working within confined spaces have predominantly improved.


Download data is not yet available.

Article Details

Original article


1. Plowman AS, Smith LD. Exercise physiology for health fitness and performance. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2017.
2. Jenkins DG, Quigley BM. Endurance training enhances critical power. Med Sci Sports Exerc. 1992; 24: 1283-9.
3. ประทุม ม่วงมี. อินเทอร์วาล เทรนนิ่ง คู่มือการฝึกกีฬา. กรุงเทพฯ: อมรการพิมพ์; 2532.
4. Crawford MA, Foster C, Poole C, Bushey B, Wilborn C. Comparison of aerobic training
methods on VO2max, body composition and anaerobic power. Int J Exerc Sci. 2009; 2: S16, [Internet]. [accessed Feb 27, 2010]. Available from: https://digitalcommons.wku.edu/cgi/viewcontent.cgi?referer=https://scholar.google.co.th/&httpsredir=1&article=1017&context=ijesab
5. มณินทร รักษ์บำรุง. ผลของการฝึกวิ่งแบบต่อเนื่องควบคู่กับการฝึกวิ่งแบบอินเทอร์วาลที่มีต่อแอนแอโรบิคเทรชโฮล ปริมาณฮีมาโตคริต และความสามารถสูงสุดในการใช้ออกซิเจน. [วิทยานิพนธ์ปริญญาวิทยาศาสตรมหาบัณฑิต]. ชลบุรี: มหาวิทยาลัยบูรพา; 2546.
6. Malatesta D, Werlen C, Bulfaro S, Chenevière X, Borrani F. Effect of high-intensity interval exercise on lipid oxidation during postexercise
recovery. Med Sci Sports Exerc. 2009; 41: 364-74.
7. Foster C, Farland CV, Guidotti F, Harbin M, Roberts B, Schuette J, et al. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity. J Sports Sci Med. 2015; 14: 747-55.
8. Hetlelid JK, Herold E, Seiler S. Comparison of metabolic responses to high-intensity interval training in trained and well-trained males. Med Sci Sports Exerc. 2009; 41: 501.
8. วิรัตน์ สนธิ์จันทร์. ผลของการฝึกแบบอินเทอร์วาลในระดับความหนักและระยะเวลาต่างกัน ที่มีต่อ
ความสามารถสูงสุดในการนำออกซิเจนไปใช้ ปริมาณฮีโมโกลบิน สมรรถภาพเชิงแอนแอโรบิก และ
แอนแอโรบิกเทรชโฮล. [ดุษฎีนิพนธ์ปริญญาปรัชญาดุษฎีบัณฑิต]. ชลบุรี: มหาวิทยาลัยบูรพา; 2555.
9. Bayati M, Farzad B, Gharakhanlou R, Agha-Alinejad H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med. 2011; 10: 571–576.
10. Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, et al. Effect of intensity of aerobic training on VO2max.Med Sci Sports Exerc. 2008; 40: 1336-43.
11. Zacharogiannis E, Tziortzis S, Paradisis G. Effects of continuous, interval and speed training on anaerobic capacity. Med Sci Sports Exerc. 2003; 35: pS372.
12. Foster C, Farland C, Guidotti F, Harbin M, Roberts B, Schuette J, et al. The effects of high intensity interval training vs steady state training on aerobic and anaerobic capacity. J Sports Sci Med. 2015; 14: 747-55.
13. Nalcakan RG. The effects of sprint interval vs continuous endurance training on physiological and metabolic adaptations in young healthy adults. J Hum Kinet. 2014; 44: 97-109.
14. ธีรศักดิ์ อาภาวัฒนาสกุล. หลักวิทยาศาสตร์ในการฝึกกีฬา. กรุงเทพฯ: ส.เอเซียเพรส(1989); 2552.
15. MacDougall J, Hicks A, MacDonald J, Green H, Smith K. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol. 1998; 84: 2138-42.
16. Burgomaster K, Hughes S, Heigenhauser G, Bradwell S, Gibala M. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. 2005; 98: 1985-90.
17. Jacobs R, Flück D, Bonne T, Bürgi S, Christensen P, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol. 2013; 115: 785-93.