A study of suitable solvents for thymol for dental usages

Authors

  • Thanattha Wuttihasa Faculty of Dentistry, Mahidol University
  • Sarut Thairat Faculty of Dentistry, Mahidol University
  • Peerapong Tua-Ngam Faculty of Dentistry, Mahidol University
  • Supawida Kunlug Faculty of Dentistry, Mahidol University

DOI:

https://doi.org/10.14456/jmu.2024.25

Keywords:

Thymol, dissolution, dental usages

Abstract

           Thymol possesses a broad spectrum antimicrobial effect. According to its biological properties, Mahidol University Faculty of Dentistry has prepared a 0.1% (weight/volume) thymol product for preserving the tooth specimens for dental research. Since thymol is slightly dissolved in water, its time-consuming preparations result in an occasional shortage of the product. By using the ethanol (EtOH), this research then aimed to reduce the product’s preparation time, the properties and the active ingredients of which are still retained. In addition, the thymol solvent’s appropriate concentration and the post-dissolved thymol’s amount were investigated.

           The preparation time for 0.1% w/v thymol solution and the minimum volumes of EtOH (55%, 75%, 95%, and absolute) used as the thymol solvents were analyzed. Active compounds of the thymol solution were determined by using a high-performance liquid chromatography (HPLC). The minimum volume of all EtOH to completely dissolve the thymol in this study was 3 mL (per 100 mL of the total volume). Furthermore, the HPLC analyses have shown 0.079%, 0.089%, 0.087%, 0.087%, and 0.086% (w/v) thymol in the prepared solutions of DIW, 55% EtOH, 75% EtOH, 95% EtOH, and absolute alcohol, respectively.

           In conclusion, the 0.1% thymol solutions prepared by EtOH with various concentrations provided a higher amount of thymol than that prepared by DIW. This formula could be further improved for future usages.

References

วิพรพรรณ ศรีสุธรรม, ศศิพิมพ์ คำสระ, ปาริชาติ พุ่มขจร และ พงศ์ศักดิ์ รัตนชัยกุลโสภณ. (2561). อิทธิพลของอุณหภูมิต่อความสามารถในการยับยั้งและกลไกการยับยั้ง Escherichia coli O157:H7 โดยไทมอล. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี, 20(1), 36-43.

Angélica Escobar, Miriam Pérez, Gustavo Romanelli, Guillermo Blustein. (2020). Thymol bioactivity: A review focusing on practical applications. Arabian Journal of Chemistry, 13(12), 9243-9269.

Boutsioukis, C., Psimma, Z., & Kastrinakis, E. (2014). The effect of flow rate and agitation technique on irrigant extrusion ex vivo. International endodontic journal, 47(5), 487–496. https://doi.org/10.1111/iej.12176

Cosentino, S., Tuberoso, C. I. G., Pisano, B., Satta, M., Mascia, V., Arzedi, E., & Palmas, F. (1999). In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in applied microbiology, 29(2), 130–135. https://doi.org/10.1046/j.1472-765x.1999.00605.x

Dedić, M., Bečić, E., Imamović, B., Žiga, N., Medanhodžić-Vuk, S., Šober, M. (2018). HPLC method for determination the content of thymol and carvacrol in Thyme tincture. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 50, 1-6.

Ferrer-Luque, C. M., Bejarano, I., Ruiz-Linares, M., & Baca, P. (2014). Reduction in Enteroccocus faecalis counts - a comparison between rotary and reciprocating systems. International endodontic journal, 47(4), 380–386. https://doi.org/10.1111/iej.12158

Goodis, H. E., Marshall, G. W., Jr, White, J. M., Gee, L., Hornberger, B., & Marshall, S. J. (1993). Storage effects on dentin permeability and shear bond strengths. Dental materials: official publication of the Academy of Dental Materials, 9(2), 79–84. https://doi.org/10.1016/0109-5641(93)90079-6

Hajimehdipoor, H., Shekarchi, M., Khanavi, M., Adib, N., & Amri, M. (2010). A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacognosy magazine, 6(23), 154–158. https://doi.org/10.4103/0973-1296.66927

Kokoska, L., Kloucek, P., Leuner, O., & Novy, P. (2019). Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Current medicinal chemistry, 26(29), 5501–5541. https://doi.org/10.2174/092986 7325666180831144344

Lambert, R. J., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of applied microbiology, 91(3), 453–462. https://doi.org/10.1046/j.1365-2672.2001.01428.x

Miladi, H., Zmantar, T., Kouidhi, B., Al Qurashi, Y., Bakhrouf, A., Chaabouni, Y., Mahdouani, K., & Chaieb, K. (2017). Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microbial pathogenesis, 112, 156–163. https://doi.org/10.1016/j.micpath.2017.09.057

Merghni, A., Ben Nejma, M., Dallel, I., Tobji, S., Ben Amor, A., Janel, S., Lafont, F., Aouni, M., & Mastouri, M. (2016). High potential of adhesion to biotic and abiotic surfaces by opportunistic Staphylococcus aureus strains isolated from orthodontic appliances. Microbial pathogenesis, 91, 61–67. https://doi.org/10.1016/j.micpath.2015.11.009

Peters, O. A., Morgental, R. D., Schulze, K. A., Paqué, F., Kopper, P. M., & Vier-Pelisser, F. V. (2014). Determining cutting efficiency of nickel-titanium coronal flaring instruments used in lateral action. International endodontic journal, 47(6), 505–513. https://doi.org/10.1111/iej.12177

Shabir, G. (2004). Step-by-step analytical methods validation and protocol in the quality system compliance industry. Journal of validation technology, 10, 314-324.

Downloads

Published

2024-12-26

Issue

Section

Research Articles