Effect of Predrilling Diameter on Orthodontic Miniscrew Primary Stability
Main Article Content
Abstract
Background: Predrilling diameter is a factor that is associated with miniscrew primary stability. However, no studies have reported on the relationship between predrilling sizes and shear force loaded as anchorage during orthodontic treatment. Objective: The purpose of this study was to evaluate the effect of 0.70, 0.80, 0.90, 1.00, 1.10, and 1.20 mm predrilling sizes on insertion torque and shear test using 1.30-mm diameter miniscrews in 1-mm thick synthetic cortical bone. Materials and methods: Insertion torque was recorded using a torque driver. The shear test was performed using a universal testing machine by loading a tangential force perpendicularly to the miniscrew at 1 mm/min until it was displaced by 0.50 mm. Results: Overall, the insertion torque tended to significantly decrease as the predrilling diameters increased. The exceptions were in the 0.70 and 0.80 mm groups that had insertion torque values lower than those in the 0.90 mm and 1.00 mm groups. Regarding the shear test, although there were no significant differences among the groups, the 1.20-mm predrilling diameter group demonstrated a much lower value, suggesting that it might be easier to dislodge after receiving an orthodontic force. Conclusion: Predrilling diameter size up to 77 % of the 1.30-mm outer diameter miniscrew can be used to achieve optimal orthodontic miniscrew primary stability.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Proffit WR, Fields HW, Larson BE, Sarver DM. Contemporary Orthodontics.6th ed. Philadelphia, PA: Elsevier; 2019.p.265-8.
Roberts-Harry D, Sandy J. Orthodontics. Part 9: anchorage control and distal movement. Br Dent J 2004;196(5):255-63.
Lin JC, Liou EJ. A new bone screw for orthodontic anchorage. J Clin Orthod 2003;37(12):676-81.
Patil P, Kharbanda OP, Duggal R, Das TK, Kalyanasundaram D. Surface deterioration and elemental composition of retrieved orthodontic miniscrews. Am J Orthod Dentofacial Orthop 2015;147(Suppl 4 ):S88-100.
Schatzle M, Mannchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res 2009;20(12): 1351-9.
Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 2000;3(1):23-8.
Migliorati M, Benedicenti S, Signori A, Drago S, Barberis F, Tournier H, et al. Miniscrew design and bone characteristics: an experimental study of primary stability. Am J Orthod Dentofacial Orthop 2012;142(2):228-34.
Gedrange T, Hietschold V, Mai R, Wolf P, Nicklisch M, Harzer W. An evaluation of resonance frequency analysis for the determination of the primary stability of orthodontic palatal implants. A study in human cadavers. Clin Oral Implants Res 2005;16(4):425-31.
Marquezan M, Souza MM, Araujo MT, Nojima LI, Nojima Mda C. Is miniscrew primary stability influenced by bone density? Braz Oral Res 2011;25(5):427-32.
Morarend C, Qian F, Marshall SD, Southard KA, Grosland NM, Morgan TA, et al. Effect of screw diameter on orthodontic skeletal anchorage. Am J Orthod Dentofacial Orthop 2009;136(2):224-9.
Baumgaertel S. Predrilling of the implant site: Is it necessary for orthodontic mini-implants? Am J Orthod Dentofacial Orthop 2010;137(6):825-9.
Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini implant. Clin Oral Implants Res 2006;17(1):109-14.
Wilmes B, Nienkemper M, Renger S, Drescher D. Miniimplant-supported temporary pontics. J Clin Orthod 2014;48(7):422-9.
Suzuki H, Moon W, Previdente LH, Suzuki SS, Garcez AS, Consolaro A. Miniscrew-assisted rapid palatal expander (MARPE): the quest for pure orthopedic movement. Dental Press J Orthod 2016;21(4):17-23.
El Nigoumi A, El-Beialy R. An upper-molar distalizer with palatal miniscrew anchorage. J Clin Orthod 2016;50(12): 767-8.
Lu P-C, Wang C-H, Wang H-C, Lee K-T, Lee H-E, Chen C-MJJodS. A study of the mechanical strength of miniscrews and miniplates for skeletal anchorage. J Dent Sci 2011;6(3):165-9.
Pickard MB, Dechow P, Rossouw PE, Buschang PH. Effects of miniscrew orientation on implant stability and resistance to failure. Am J Orthod Dentofacial Orthop 2010;137(1):91-9.
Sowden D, Schmitz JP. AO self-drilling and self-tapping screws in rat calvarial bone: an ultrastructural study of the implant interface. J Oral Maxillofac Surg 2002;60(3):294-9.
Yadav S, Upadhyay M, Liu S, Roberts E, Neace WP, Nanda R. Microdamage of the cortical bone during mini-implant insertion with self-drilling and self-tapping techniques: a randomized controlled trial. Am J Orthod Dentofacial Orthop 2012;141(5):538-46.
Wang L, Ye T, Deng L, Shao J, Qi J, Zhou Q, et al. Repair of microdamage in osteonal cortical bone adjacent to bone screw. PLoS One 2014;9(2):e89343.
Teekavanich C, Uezono M, Takakuda K, Ogasawara T, Techalertpaisarn P, Moriyama K. Evaluation of cortical bone microdamage and primary stability of orthodontic miniscrew using a human bone analogue. Materials (Basel) 2021;14(8):1825.
Uemura M, Motoyoshi M, Yano S, Sakaguchi M, Igarashi Y, Shimizu N. Orthodontic mini-implant stability and the ratio of pilot hole implant diameter. Eur J Orthod 2012;34(1):52-6.
Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod 2008;78(2):234-40.
Son S, Motoyoshi M, Uchida Y, Shimizu N. Comparative study of the primary stability of self-drilling and selftapping orthodontic miniscrews. Am J Orthod Dentofacial Orthop 2014;145(4):480-5.
Chen YH, Chang HH, Chen YJ, Lee D, Chiang HH, Yao CC. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study. Clin Oral Implants Res 2008;19(1):99-106.
Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung HM, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop 2007;131(Suppl 4):S68-73.
Lee NK, Baek SH. Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am J Orthod Dentofacial Orthop 2010;138(1):8.e1-8.
Wilmes B, Ottenstreuer S, Su YY, Drescher D. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop 2008;69(1):42-50.
Poggio PM, Incorvati C, Velo S, Carano A. “Safe zones”: a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 2006;76(2):191-7.
Hung E, Oliver D, Kim KB, Kyung HM, Buschang PH. Effects of pilot hole size and bone density on miniscrew implants’ stability. Clin Implant Dent Relat Res 2012;14(3):454-60.
Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 2006;67(3):162-74.
Battula S, Schoenfeld AJ, Sahai V, Vrabec GA, Tank J, Njus GO. The effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone. J Trauma 2008;64(4):990-5.
Kim KB, editor. Temporary skeletal anchorage devices: a guide to design and evidence-based solution. Berlin, Heidelberg: Springer; 2014.p.5-12.
Yerby S, Scott CC, Evans NJ, Messing KL, Carter DR. Effect of cutting flute design on cortical bone screw insertion torque and pullout strength. J Orthop Trauma 2001;15(3):216-21.
Heidemann W, Gerlach KL, Grobel KH, Kollner HG. Influence of different pilot hole sizes on torque measurements and pullout analysis of osteosynthesis screws. J Craniomaxillofac Surg 1998;26(1):50-5.