Chemokines and Orthodontic Tooth Movement

Main Article Content

Supunsa Pongtiwattanakul
Peungchaleoy Thammanichanon
Chidchanok Leethanakul

Abstract

Orthodontic tooth movement is caused by the force acting on the periodontal tissue surrounding the tooth that divides by the affected area into two sides: the side that a tooth moves toward is called the pressure side; the other side is the opposite side that a tooth moves away from, called the tension side. These sides present periodontal tissue remodeling from the stimulation of various mediators such as cytokines, growth factors, and chemokines. Chemokines are small molecules that are important for bone remodeling processes in orthodontic tooth movement. This review article aims to present the role and importance of chemokines in orthodontic tooth movement.


 

Article Details

How to Cite
1.
พงศ์ติวัฒนากุล ส, Thammanichanon P, Leethanakul C. Chemokines and Orthodontic Tooth Movement. Thai J Orthod [Internet]. 2023 Nov. 17 [cited 2024 Dec. 22];13(2):56-6. Available from: https://he01.tci-thaijo.org/index.php/THAIORTHO/article/view/261909
Section
Review Article

References

Andrade Jr I, Taddei S, Souza P. Inflammation and tooth movement: the role of cytokines, chemokines, and growth factors. Semin Orthod 2012;18:257–69.

Zainal Ariffin SH, Yamamoto Z, Zainol Abidin LZ, Megat Abdul Wahab R, Zainal Ariffin Z. Cellular and molecular changes in orthodontic tooth movement. Sci World J 2011;11:761768.

Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 2006;129(4):469.e1-32.

Dhanashree S, Shailja C, Prachi G, Jaspreet KB. Current knowledge of biological processes involved in the orthodontic movement of teeth. Int J Curr Res 2016; 8(12):43101-8.

Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 2009;88(7):597-608.

Brylka LJ, Schinke T. Chemokines in physiological and pathological bone remodeling. Front Immunol 2019;10:2182.

Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000;18:217-42.

Juan M, Colobran R. Chemokines and chemokine receptors. Encyclopedia of Life Sciences 2009;2:a0020165.

Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. J Dent Res 2007;86(4):306-19.

Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol 2003;111(2, Supplement 2):S460-S75.

Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005;125(4):615-28.

Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Chemokines are upregulated during orthodontic tooth movement. J Interferon Cytokine Res 1999;19(9):1047-52.

Goto KT, Kajiya H, Nemoto T, Tsutsumi T, Tsuzuki T, Sato H, et al. Hyperocclusion stimulates osteoclastogenesis via CCL2 expression. J Dent Res 2011;90(6):793-8.

Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12(2):121-7.

Vinader V, Afarinkia K. A beginner’s guide to chemokines. Future Med Chem 2012;4(7):845-52.

Kufareva I, Gustavsson M, Holden LG, Qin L, Zheng Y, Handel TM. Disulfide trapping for modeling and structure determination of receptor: chemokine complexes. Methods Enzymol 2016;570:389-420.

Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 2010;411(21-22):1570-9.

Zimmermann N, Hershey GK, Foster PS, Rothenberg ME. Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol 2003;111(2):227-42.

Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338(7):436-45.

Kim MS, Day CJ, Selinger CI, Magno CL, Stephens SR, Morrison NA. MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption. J Biol Chem 2006;281(2):1274-85.

Schall TJ. Biology of the RANTES/SIS cytokine family. Cytokine 1991;3(3):165-83.

Keane MP, Strieter RM. Chemokine signaling in inflammation. Crit Care Med 2000;28(4):N13-26.

Rath-Deschner B, Memmert S, Damanaki A, Nokhbehsaim M, Eick S, Cirelli JA, et al. CXCL1, CCL2, and CCL5 modulation by microbial and biomechanical signals in periodontal cells and tissues-in vitro and in vivo studies. Clin Oral Investig 2020;24(10):3661-70.

Garlet TP, Coelho U, Repeke CE, Silva JS, Cunha Fde Q, Garlet GP. Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine

;42(3):330-5.

Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013;495(7440):227-30.

Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006;25(6):977-88.

Ozaki K, Hanazawa S, Takeshita A, Chen Y, Watanabe A, Nishida K, et al. Interleukin-1 beta and tumor necrosis factor-alpha stimulate synergistically the expression of monocyte chemoattractant protein-1 in fibroblastic cells derived from human periodontal ligament. Oral Microbiol Immunol 1996;11(2):109-14.

Taddei SR, Andrade I, Jr., Queiroz-Junior CM, Garlet TP, Garlet GP, Cunha Fde Q, et al. Role of CCR2 in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2012;141(2):153-60.

Sul OJ, Ke K, Kim WK, Kim SH, Lee SC, Kim HJ, et al. Absence of MCP-1 leads to elevated bone mass via impaired actin ring formation. J Cell Physiol 2012;227(4):1619-27.

Kim MS, Day CJ, Morrison NA. MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem 2005;280(16):16163-9.

Miyamoto K, Ninomiya K, Sonoda KH, Miyauchi Y, Hoshi H, Iwasaki R, et al. MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner. Biochem Biophys Res Commun 2009;383(3):373-7.

Jin J, Cao J. Upregulated expression of monocyte chemoattractant protein-1 in human periodontal ligament cells induced by interleukin-1β. Aust Dent J 2015;60(3):382-9.

Taylor BC, Lee CT, Amaro RE. Structural basis for ligand modulation of the CCR2 conformational landscape. Proceedings of the National Academy of Sciences 2019;116(17):8131-6.

Watanabe T, Kukita T, Kukita A, Wada N, Toh K, Nagata K, et al. Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J Endocrinol 2004;180(1):193-201.

Lee JE, Shin HH, Lee EA, Van Phan T, Choi HS. Stimulation of osteoclastogenesis by enhanced levels of MIP-1alpha in BALB/c mice in vitro. Exp Hematol 2007;35(7):1100-8.

Tsubaki M, Kato C, Manno M, Ogaki M, Satou T, Itoh T, et al. Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem 2007;304(1-2):53-60.

Madureira DF, Taddei Sde A, Abreu MH, Pretti H, Lages EM, da Silva TA. Kinetics of interleukin-6 and chemokine ligands 2 and 3 expression of periodontal tissues during orthodontic tooth movement. Am J Orthod Dentofacial

Orthop 2012;142(4):494-500.

Taddei SR, Queiroz-Junior CM, Moura AP, Andrade I Jr, Garlet GP, Proudfoot AE, et al. The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Bone 2013;52(1):259-67.

Andrade I Jr, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res 2009;88(11):1037-41.

Lee SY, Yoo HI, Kim SH. CCR5-CCL Axis in PDL during Orthodontic Biophysical Force Application. J Dent Res 2015;94(12):1715-23.

Yano S, Mentaverri R, Kanuparthi D, Bandyopadhyay S, Rivera A, Brown EM, et al. Functional expression of betachemokine

receptors in osteoblasts: role of regulated upon activation, normal T cell expressed and secreted (RANTES) in osteoblasts and regulation of its secretion by osteoblasts and osteoclasts. Endocrinol 2005;146(5):2324-35.

Doucet M, Jayaraman S, Swenson E, Tusing B, Weber KL, Kominsky SL. CCL20/CCR6 Signaling Regulates Bone Mass Accrual in Mice. J Bone Miner Res 2016;31(7):1381-90.

Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis 2015;32(4):353-68.

Yang Y, Zhou X, Li Y, Chen A, Liang W, Liang G, et al. CXCL2 attenuates osteoblast differentiation by inhibiting the ERK1/2 signaling pathway. J Cell Sci 2019;132(16).

Ha J, Choi H-S, Lee Y, Kwon H-J, Song YW, Kim H-H. CXC Chemokine Ligand 2 Induced by Receptor Activator of NF-κB Ligand Enhances Osteoclastogenesis. J Immunol 2010;184(9):4717-24.

Phusuntornsakul P, Jitpukdeebodintra S, Pavasant P, Leethanakul C. Vibration enhances PGE(2) , IL-6, and IL-8 expression in compressed hPDL cells via cyclooxygenase pathway. J Periodontol 2018;89(9):1131-41.

Chaudhary LR, Avioli LV. Dexamethasone regulates IL-1 beta and TNF-alpha-induced interleukin-8 production in human bone marrow stromal and osteoblast-like cells. Calcif Tissue Int 1994;55(1):16-20.

Rothe L, Collin-Osdoby P, Chen Y, Sunyer T, Chaudhary L, Tsay A, et al. Human Osteoclasts and Osteoclast-Like Cells Synthesize and Release High Basal and Inflammatory Stimulated Levels of the Potent Chemokine Interleukin-8. Endocrinology 1998;139(10):4353-63.

Asano M, Yamaguchi M, Nakajima R, Fujita S, Utsunomiya T, Yamamoto H, et al. IL-8 and MCP-1 induced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues. Oral Dis 2011;17(5):489-98.

Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 2003;33(1):28-37.

Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: An evolving chemokine. Cytokine 2022;153:155828.

Gotsch F, Romero R, Friel L, Kusanovic JP, Espinoza J, Erez O, et al. CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia. J Matern Fetal Neonatal Med 2007;20(11):777-92.

Rath-Deschner B, Memmert S, Damanaki A, de Molon RS, Nokhbehsaim M, Eick S, et al. CXCL5, CXCL8, and CXCL10 regulation by bacteria and mechanical forces in periodontium. Ann Anat - Anat Anz 2021;234:151648.

Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011;22(3):121-30.

Yashiro Y, Nomura Y, Kanazashi M, Noda K, Hanada N, Nakamura Y. Function of chemokine (CXC motif) ligand 12 in periodontal ligament fibroblasts. PLoS One 2014;9(5):e95676.

Havens AM, Chiu E, Taba M, Wang J, Shiozawa Y, Jung Y, et al. Stromal-derived factor-1alpha (CXCL12) levels increase in periodontal disease. J Periodontol 2008;79(5):845-53.

Morandini AC, Sipert CR, Gasparoto TH, Greghi SL, Passanezi E, Rezende ML, et al. Differential production of macrophage inflammatory protein-1alpha, stromal-derived factor-1, and IL-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide from P. gingivalis. J Periodontol 2010;81(2):310-7.

Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 2006;28(3):221-40.

Nimeri G, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment--a frontier in orthodontics. Prog Orthod 2013;14:42.

Rath-Deschner B, Nogueira AVB, Beisel-Memmert S, Nokhbehsaim M, Eick S, Cirelli JA, et al. Interaction of periodontitis and orthodontic tooth movement-an in vitro and in vivo study. Clin Oral Investig 2022;26(1):171-81.