Anti-inflammatory and Antioxidant Activities of Germinated Small Red Bean (Vignaangularis) Extracts on Hyperglycemia Condition in Murine Macrophage Cell Line


  • Chusana Mekhora Institute of Food Research and Product Development, Kasetsart University
  • Siriporn Tonjor Institute of Food Research and Product Development, Kasetsart University
  • Nednapis Vattanasuchart Institute of Food Research and Product Development, Kasetsart University


Chronic inflammation, Hyperglycemia, Red bean germination


Hyperglycemia has been associated with chronic inflammation that contributed to complications in diabetic patients. High blood glucose levels induce proinflammatory mediators such as nitric oxide (NO), TNF-α, IL-6, IL-1b, IL-8 cytokines expression including intracellular reactive oxygen/nitrogen species in several cell types. Small red bean (Vigna angularis) is a high nutritious legume. It contains several nutrients and phenolic compounds exhibiting many health benefits including anti-inflammatory and antioxidant properties. Seed germination is used to improve desirable nutrients and bioactive compounds. During germinated process, the biological changing of seed occurs for growth that might affect nutrient quantity and functional properties. Due to its high nutrients and bioactive compounds, this study aims to determine anti-inflammatory and antioxidant activity of methanol extract from germinated small red bean on hyperglycemia condition in mouse macrophage cell line (RAW264.7 cells). RAW264.7 cells were culture in normal glucose condition (5.5 mM D-glucose), or high glucose condition (30 mM D-glucose) and co-treatment with germinated red bean extracts (0 or 24 h) at concentration 62.5, 125 and 250 µg/ml for 48 h. The total phenolic contents in germinated red bean extracts at 0 and 24 h were 12.62 ± 0.86 mg/g and 10.60 ± 1.55 mg/g dry weight, respectively. The results showed that high glucose activated RAW264.7 cells to secrete NO, TNF-α, and intracellular ROS compared with normal glucose condition. Co-treatment the germinated red bean extracts at 0 or 24 h significantly inhibited NO, TNF-α, and intracellular ROS producing by RAW264.7 cells without cytotoxicity. Extract from germinated red bean at 0 h exhibited a greater anti-inflammatory activity than extract from 24 h which correlated with their phenolic contents in the extract. These results suggested that phenolic compounds in germinated small red bean may contribute to decrease proinflammatory mediators related with diabetic complications.  However, the molecular mechanisms and animal study should be further explored.


Download data is not yet available.


สำนักนโยบายและยุทธศาสตร์ สำนักงานปลัดกระทรวงสาธารณสุข. ผลการสำรวจสภาวะสุขภาพอนามัยของประชาชนไทย ครั้งที่ 4 ประจำปี 2551-2552. นนทบุรี: เดอะ กราฟโก ซิสเต็มส์; 2554.

Gonzalez Y, Herrera MT, Soldevila G, Garcia-Garcia L, Fabián G, Pérez-Armendariz EM, et al. High glucose concentrations induce TNF-alpha production through the down-regulation of CD33 in primary human monocytes. BMC immunol. 2012;13:19.

Devaraj S, Venugopal SK, Singh U, Jialal I. Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase c-{alpha} and -{beta}. Diabetes. 2005;54(1):85-91.

Devaraj S, Jialal I. Increased secretion of IP-10 from monocytes under hyper- glycemia is via the TLR2 and TLR4 pathway. Cytokine. 2009;47(1):6-10.

Temelkova-Kurktschiev T, Henkel E, Koehler C, Karrei K, Hanefeld M. Subclinical inflammation in newly detected Type II diabetes and impaired glucose tolerance. Diabetologia. 2002;45(1):151.

Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004;53(8):2079-86.

de Rekeneire N, Peila R, Ding J, Colbert LH, Visser M, Shorr RI, et al. Diabetes, hyperglycemia, and inflammation in older individuals: the health, aging and body composition study. Diabetes care. 2006; 29(8):1902-8.

Orie NN, Zidek W, Tepel M. Increased intracellular generation of reactive oxygen species in mononuclear leukocytes from patients with diabetes mellitus type 2. Exp Clin Endocrinol Diabetes. 2000;108(3):175-80.

Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metabol. 2000;85(8):2970-3.

Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52(7):1799-805.

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-20.

Sharpe PC, Liu WH, Yue KK, McMaster D, Catherwood MA, McGinty AM, et al. Glucose-induced oxidative stress in vascular contractile cells: comparison of aortic smooth muscle cells and retinal pericytes. Diabetes. 1998;47(5):801-9.

Yu T, Ahn HM, Shen T, Yoon K, Jang HJ, Lee YJ, et al. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. J ethnopharmacol. 2011;137(3):1197-206.

Oomah BD, Corbe A, Balasubramanian P. Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J Agric Food Chem. 2010;58(14):8225-30.

Zou YP, Chang Sam KC. Antioxidant and Antiproliferative Properties of Extract and Fractions from Small Red Bean (Phaseolus vulgaris L.). J Food Nut. 2014;1(105):1-11.

García-Lafuente A, Moro C, Manchón N, et al. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem. 2014;161: 216-23.

Atchibri, Ocho-Anin AL, Brou KD, Kouakou TH, Kouadio JY, Gnakri D. Screening for anti- diabetic activity and phytochemical constituents of common bean (Phaseolus vulgaris L.) seeds. Journal of Medicinal Plants Research. 2010;4(17):1757-61.

Eunhye K, Hongkeun S, Yongjin P, Jeong ran L, Minyoung K, Illmin C. Determination of Phenolic Compounds in Adzuki bean (Vignaangularis) Germplasm. Korean J Crop Sci. 2011;56(4):375-84.

Duenas M, Martinez-Villaluenga C, Limon RI, Penas E, Frias J. Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Res Int. 2015;70:55-63.

Khampang E, Kerdchoechuen O, Laohakunjit N. Change of chemical composition of rice and cereals during germination. Agricultural Sci J. 2009;3: 341-4.

ภัสจนันท์ หิรัญ, อรพิน เกิดชูชื่น, ณัฏฐา เลาหกุลจิตต์. การเปลี่ยนแปลงปริมาณสารอาหารและสารต้านอนุมูลอิสระของถั่วแดงงอกหลังผ่านกระบวนการหมัก. วารสารวิทยาศาสตร์เกษตร. 2554;2:321-5.

Ali NM, Yusof HM, Yeap SK, Ho WY, Beh BK, Long K, et al. Anti-Inflammatory and antinociceptive activities of untreated, germinated, and fermented Mung bean aqueous extract. Evid Based Compl Alt Med. 2014:350507.

Xu BJ, Chang SKC. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci. 2007;72(2):S159-S66.

Mustafa RA, Abdul Hamid A, Mohamed S, Bakar FA. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J Food Sci. 2010;75(1):C28-35.

King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004; 122(4):333-8.

Zhang X, Zhou M, Guo Y, Song Z, Liu B. 1,25-Dihydroxyvitamin D(3) Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARgamma Signaling Pathway. BioMed research international. 2015;2015:157834.

Jia YH, Zheng Z, Wang YC, Zhou Q, Cai W,Jia W, et al. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264.7 Cells. PloS one. 2015;10(3):e0120849.

Khandelwal S, Udipi SA, Ghugre P. Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Res Int. 2010; 43(2):526-30.

López-Amorós ML, Hernández T, Estrella I. Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Compos Anal. 2006;19(4):277-83.

Morohoshi M, Fujisawa K, Uchimura I, Numano F. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes. 1996;45(7):954-9.

Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes care. 2004;27(3):813-23.

Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond). 2006;20(12):1366-9.

Joussen AM, Poulaki V, Mitsiades N, Kirchhof B, Koizumi K, Dohmen S, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. Faseb J. 2002;16(3):438-40.

Zheng L, Howell SJ, Hatala DA, Huang K, Kern TS. Salicylate-based antiinflam- matory drugs inhibit the early lesion of diabetic retinopathy. Diabetes. 2007;56(2):337-45.

Cohen KL, Harris S. Efficacy and safety of nonsteroidal anti-inflammatory drugs in the therapy of diabetic neuropathy. Arch Intern Med. 1987;147(8):1442-4.

Shi X, Chen Y, Nadeem L, Xu G. Beneficial effect of TNF-alpha inhibition on diabetic peripheral neuropathy. J Neuroinflammation. 2013;10:69.

Hayden MR, Tyagi SC. Islet redox stress: the manifold toxicities of insulin resistance, metabolic syndrome and amylin derived islet amyloid in type 2 diabetes mellitus. JOP. 2002;3(4):86-108.




How to Cite

Mekhora, C., Tonjor, S., & Vattanasuchart, N. (2018). Anti-inflammatory and Antioxidant Activities of Germinated Small Red Bean (Vignaangularis) Extracts on Hyperglycemia Condition in Murine Macrophage Cell Line. Journal of Nutrition Association of Thailand, 53(2), 84–97. Retrieved from



Research article