Effect of Diet Consumption on Gut Microbiota and Health
Keywords:
Gut microbiota, Short chain fatty acids, Nutrients, PhytochemicalsAbstract
Diet has profound impacts on the composition of the gut microbiota because they produce metabolite products which have the potential to promote good health and be involved in pathogenesis in the host. Symbiotic bacteria manipulate a mutually beneficial relationship between bacteria and host. Their metabolites resist the invasion of pathogenic microorganisms. Some gut bacteria utilize dietary fiber that cannot be digested by enzymes in the digestive tract to produce short-chain fatty acids such as butyrate, propionate, and acetate in the fermentation process. They regulate the metabolic processes and prevent the development of non-communicable diseases and neurodegenerative diseases. Gut microbiota can break down amino acids from some protein foods that provide toxic metabolites in the cell, causing adverse effects on health. Meanwhile, indole-propionate acid from tryptophane maintains intestinal homeostasis and prevents inflammation. Consumption of high-fat and ultra-processed foods that are high in refined carbohydrates, simple sugar, and salt can cause the reduction of short-chain fatty acids producing gut microbiota, increasing pro-inflammation and oxidative stress. Consequently, these effects result in the development of non-communicable diseases and neurodegenerative diseases. On the other hand, consuming cereals, vegetables, and fruits that contain phytochemical compounds increases the health-promoting bacteria in the gut. Hence, understanding the effect of food consumption on gut bacteria and health should be applied as the daily diet eating guideline that can prevent diseases and promote healthy choices.
References
วสุนธรา รตโนภาส. 2560. กินดีสำหรับสุขภาพดีในศตวรรษที่ 21. สักทอง: วารสารวิทยาศาสตร์และเทคโนโลยี (สทวท.), 4(1), 1-13.
Abu-Ghazaleh, N., Chua, W.J. & Gopalan, V. (2021). Intestinal microbiota and its association with colon cancer and red/processed meat consumption. Journal of Gastroenterology and Hepatology, 36, 75-88.
Cai, J., Rimal, B., Jiang C, Chiang, J.Y.L., Patterson, A.D. (2022). Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacology & Therapeutics, 237(108238), 1-30.
Chierico, F.D., Vernocchi, P., Dallapiccola, B. & Putignani, L. (2014). Mediterranean diet and health: Food effects on gut microbiota and disease control. International Journal of Molecular Sciences, 15(7), 11678-11699.
Curtis, M.M. & Sperandio, V. (2011). A complex relationship: The interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunology, 2(4), 134-138.
Duthie, S.J., Duthie, G.G., Russell, W.R., Kyle, J.A.M., Macdiarmid, J.I., Rungapamestry ,V., Stephen, S., Megias-Baeza, C., Kaniewska, J.J., Shaw, L., Milne, L., Bremner, D., Ross, K., Morrice, P., Pirie, L.P., Horgan, G. & Bestwick , C.S. (2018). Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: A randomised trial. European Journal of Nutrition, 57(5), 1855–1872.
Feng, W., Ao, H. & Peng, C. (2018). Gut microbiota, Short-chain fatty acids, and herbal medicines. Frontiers in Pharmacology, 9, 1-12.
García-Montero, C., Fraile-Martínez, O., Gómez-Lahoz, A.M., Pekarek, L., Castellanos, A.J., Noguerales-Fraguas, F., Coca, S., Guijarro, L.G., García-Honduvilla, N., Asúnsolo, A., Sanchez-Trujillo, L., Lahera, G., Bujan, J., Monserrat, J., Álvarez-Mon, M., Álvarez-Mon, M.A. & Ortega, M.A. (2021). Nutritional components in western diet versus mediterranean diet at the gut microbiota–immune system interplay. Implications for health and disease. Nutrients, 13(699), 1-49.
Gentile, C.L. & Weir, T.L. (2018). The gut microbiota at the intersection of diet and human health. Science, 362(6416), 776–780.
Janeiro, M.H, Ramírez, M.J., Milagro, F.I., Martínez, J.A. & Solas, M. (2018). Implication of trimethylamine n-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients, 10(1398), 1-22.
Kowalski, K & Mulak, A. (2019). Brain-gut microbiota axis in Alzheimer’s disease. Journal of Neurogastroenterol Motil, 25(1), 48-60.
Krga, I. & Glibetic, M. (2021). Gut microbiota in health and diseases. Reference Module in Food Sciences, 1-17.
Leo, E.E.M. & Campos, M.R.S. (2020). Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition, 71, 1-7.
Morrison, D.J. & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbs, 7(3), 189–200.
Parker, A., Fonseca, S. & Carding, S.R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11(2), 135–157.
Pei, R., Liu, X.& Bolling, B. (2020). Flavonoids and gut health. Current Opinion in Biotechnology, 61, 153–159.
Pickard, J.M., Zeng, M.Y., Caruso, R. & Núñez, G. (2017). Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 279(1), 70-89.
Pujari, R. & Banerjee, G. (2021). Impact of prebiotics on immune response: From the bench to clinic. Immunology & Cell Biology, 99(3), 255–273.
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A. & Mele, M.C. (2019). What is the healthy gut Microbiota composition? A changing ecosystem across age, Environment, Diet, and Diseases. Microorganisms, 7(14), 17-22.
Rios-Covian, D., González, Sonia, Nogacka, A.M., Arboleya, S., Salazar, N., Gueimonde, M. & de los Reyes-Gavilán, C.G. (2020). An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: Associated dietary and anthropometric factors. Frontiers in Microbiology, 11(973), 1-9.
Santos-Marcos, J.A., Perez-Jimenez, F. & Camargo, A. (2019). The role of diet and intestinal microbiota in the development of metabolic syndrome. Journal of Nutritional Biochemistry, 70, 1–27.
Sarkar, S.R. & Banerjee, S. (2019). Gut microbiota in neurodegenerative disorders. Journal of Neuroimmunology, 328, 98–104.
Shin, J.H. & Seeley, R.J. (2019). Reg3 proteins as gut hormones?. Endocrinology, 160(6), 1506–1514.
Silveira-Nunes, G., Durso, D.F., de Oliveira Jr, L.R.A., Cunha, E.H.M., Maioli, T.U., Vieira, A.T., Speziali, E., Corrêa-Oliveira, R., Martins-Filho, O.A., Teixeira-Carvalh, A, Franceschi, C., Rampelli, S., Turroni, S., Brigidi, P. & Faria, A.M.C. (2020). Hypertension is associated with intestinal microbiota dysbiosis and inflammation in a brazilian population. Frontiers in Pharmacology, 12, 1-14.
Silva, Y.P., Bernardi, A. & Luiz, R. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers Endocrinology, 11, 1-14.
Singh, R.K., Chang, H-W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T.H., Bhutani, T. & Liao, W. (2017). Infuence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(73), 1-17.
Verduci, E., Carbone, M.T., Borghi, E., Ottaviano, E., Burlina, A. & Biasucci, G. (2020). Nutrition, Microbiota and role of gut-brain axis in subjects with phenylketonuria (PKU). A Review Nutrients, 12(3319), 1-31.
Wan, Y., Wang, F., Yuan, J., Li, J., Jiang, D., Zhang, J., Li, H., Wang, R., Tang, J., Huang, T., Zheng, J., Sinclair, A.J., Mann, J. & Li, D. (2019). Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut Microbiota, 68(8), 1417-1429.
Wu, S., Ahmed Bekhit, A.E.D., Wu, Q., Chen, M., Liao, X., Wang, J. & Ding, Y. (2021). Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends in Food Science & Technology, 108, 164–176.
Wu, W., Kong, Q., Tian, P., Zhai, Q., Wang, G., Liu, X., Zhao, J., Zhang, H., Lee, Y.K. & Chen, W. (2020). Targeting gut microbiota dysbiosis: Potential intervention strategies for neurological disorders. Engineering, 6(4), 415-423.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Christian University of Thailand

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.