Evaluation and Analysis of Kinetic and Temporal Parameters of Wheelchair Propulsion for Practical Implications of Rehabilitation and Sports
Keywords:
Wheelchair, Propulsion kinetic, Temporal parameters, Wheelchair propulsion trainingAbstract
Effective wheelchair propulsion training for patients and athletes relies largely upon an in-depth analysis of the kinetic and temporal variables of wheelchair propulsion. The kinetic parameters indicate the quantity and quality of force applied on the handrim and translation into the hub to propel the wheel. The temporal parameters are used clinically to demonstrate an optimal pattern and cadence of propulsion. Thus, the kinetic and temporal parameters illustrate the effectiveness of energy expenditure and external propulsion work done and indicate the risk of upper limb injuries. The analysis of these parameters is, therefore, crucial for the success of rehabilitation and wheelchair propulsion training in both patients and athletes. The objectives of this article were to highlight the significance of kinetic and temporal parameters of wheelchair propulsion and their analyses for sport and clinical implications to optimize wheelchair propulsion performance and minimize the risk of overuse injury.
References
กระทรวงการพัฒนาสังคมและความมั่นคงของมนุษย์. (2564). รายงานข้อมูลสถานการณ์ด้านคนพิการในประเทศไทย. สืบค้นจาก https://dep.go.th/images/uploads/files/Situation_dep64.pdf
ธฤษณุวัชร ไชยโคตร. (2565). ความสำคัญทางคลินิกของการเปลี่ยนแปลงตามวัยทางชีวกลศาสตร์ ของการปั่นเก้าอี้ล้อในผู้สูงอายุ. วารสารมหาวิทยาลัยคริสเตียน, 28(2), 175-194.
สำนักงานสถิติแห่งชาติ. (2563). การสำรวจความพิการ พ.ศ. 2560. สืบค้นจาก http://www.nso.go.th/site/2014en/Survey/social/SocialSecurity/Disabilitysurvey/2017/Full_Report.pdf
Cavallone, P., Vieira, T., Quaglia, G., & Gazzoni, M. (2022). Electomyographic activities of shoulder muscles during Handwheelchair. Q vs pushrim wheelchair propulsion. Medical Engineering & Physics, 106(1), 103833.
Chaikhot, D., Reed, K., Petroongrad, W., Athanasiou, F., van Kooten, D., & Hettinga, F. J. (2020). Effects of an upper-body training program involving resistance exercise and high-intensity arm cranking on peak handcycling performance and wheelchair propulsion efficiency in able-bodied men. The Journal of Strength & Conditioning Research, 34(8), 2267-2275.
Chaikhot, D., Taylor, M. J., & Hettinga, F. J. (2018). Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults. European Journal of Sport Science, 18(5), 650-658.
Cowan, R. E., Boninger, M. L., Sawatzky, B. J., Mazoyer, B. D., & Cooper, R. A. (2008). Preliminary outcomes of the smartwheel users’ group database: A proposed framework for clinicians to objectively evaluate manual wheelchair propulsion. Archives of Physical Medicine and Rehabilitation, 89(2), 260-268.
Fullerton, H. D., Borckardt, J. J., & Alfano, A. P. (2003). Shoulder pain: a comparison of wheelchair athletes and nonathletic wheelchair users. Medicine and Science in Sports and Exercise, 35(12), 1958-1961.
Heyward, O. W., Vegter, R. J., De Groot, S., & Van Der Woude, L. H. (2017). Shoulder complaints in wheelchair athletes: A systematic review. PloS One, 12(11), e0188410.
Hers, N., Sawatzky, B.J., Sheel, A.W. (2016). Age-related changes to wheelchair efficiency and sprint power output in novice able-bodied males. Ergonomics, 59(2), 291-297.
Leaman, J., & La, H. M. (2017). A comprehensive review of smart wheelchairs: past, present, and future. IEEE Transactions on Human-Machine Systems, 47(4), 486-499.
Lenton, J. P., van der Woude, L. H. V., Fowler, N. E., Nicholson, G., Tolfrey, K., & Goosey-Tolfrey, V. L. (2013). Hand-rim forces and gross mechanical efficiency at various frequencies of wheelchair propulsion. International Journal of Sports Medicine, 34(2), 158-164.
Mason, B., Lenton, J., Leicht, C., & Goosey-Tolfrey, V. (2014). A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion. Journal of Sports Sciences, 32(1), 78-91.
Rankin, J. W., Richter, W. M., & Neptune, R. R. (2011). Individual muscle contributions to push and recovery subtasks during wheelchair propulsion. Journal of Biomechanics, 44(7), 1246-1252.
Vanlandewijck, Y., Theisen, D., & Daly, D. (2001). Wheelchair propulsion biomechanics. Sports Medicine, 31(5), 339-367.
Vasquez, S. G., D’Innocenzo, M. E., Pearlman, J., Zigler, C., Mendez, Y. G., Rozen, P. & Praptoraharjo, I. (2020). Wheelchair user’s voice: A pilot study in Indonesia. bioRxiv. [pre-print] doi: https://doi.org/10.1101/2020.01.16.908772.
Vegter, R. J., Hartog, J., de Groot, S., Lamoth, C. J., Bekker, M. J., van der Scheer, J. W., et al. (2015). Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. Journal of Neuroengineering and Rehabilitation, 12(1), 1-14.
World Health Organization. (2017). Global priority research agenda for improving access to high-quality affordable assistive technology. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/254660/WHO-EMP-IAU-2017.02-eng.pdf?sequence=1
World Health Organization. (2020). Disability and health. Retrieved from https://www.who.int/news-room/fact-sheets/detail/disability-and-health 1 December 2020
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Christian University of Thailand

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.