Lateral Flow Assay for NGAL Detection Using CysteamineModified Gold Nanoparticles

Main Article Content

Paweena Tunakhun
Jullasak Daduang
Ativit Chueaponthong
Tanaton Taveepok
Panadda Wongwichittanon
Nicha Charoensri
Oranee Srichaiyapol
Patcharaporn Tippayawat
Patcharee Boonsiri
Sirirat Anutrakulchai
Kiattawee Choowongkomon
Ratree Tavichakorntrakool
Pornsuda Maraming
Sawinee Ngernpimai

Abstract

Neutrophil gelatinase-associated lipocalin (NGAL) is a promising biomarker of chronic kidney disease (CKD). A rapid and cost-effective method is required for CKD detection. This study aimed to develop and evaluate the performance characteristics of an antibody (Ab) and a method for NGAL detection in clinical samples and assess its potential as a point-ofcare test. The developed assay was highly specific for NGAL and showed no cross-reactivity with other endogenous substances. The developed lateral flow immunoassay based on cysteamine-modified gold nanoparticles exhibited a sensitivity of 12.5 ng/mL. The results showed that the dual monoclonal Ab-based sandwich is ideal for screening patients with CKD and has the potential to provide rapid and cost-effective detection of NGAL as a point-of-care testing system.

Article Details

How to Cite
1.
Tunakhun P, Daduang J, Chueaponthong A, Taveepok T, Wongwichittanon P, Charoensri N, Srichaiyapol O, Tippayawat P, Boonsiri P, Anutrakulchai S, Choowongkomon K, Tavichakorntrakool R, Maraming P, Ngernpimai S. Lateral Flow Assay for NGAL Detection Using CysteamineModified Gold Nanoparticles. Arch AHS [internet]. 2025 Mar. 13 [cited 2025 Mar. 31];37(1):37-4. available from: https://he01.tci-thaijo.org/index.php/ams/article/view/273646
Section
Original article

References

Cockwell P, Fisher LA. The global burden of chronic kidney disease. Lancet 2020; 395(10225): 662-4.

Procurement O. ESRD Analytical Methods. Am J Kidney Dis 2015; 66(1): S227-62.

Lima M, Manzoni G. Pediatric urology: Contemporary strategies from fetal life to adolescence. Pediatr Urol Contemp Strateg from Fetal Life to Adolesc 2015; 1-402.

Prasad GR. Metabolic syndrome and chronic kidney disease: Current status and future directions. World J Nephrol 2014; 3(4): 210.

Barsoum RS, Andreoli TE. International Society of Nephrology. Kidney Int 2001; 59(5): 1995-2001.

Kannapiran M, Nisha D, Madhusudhana Rao A. Underestimation of impaired kidney function with serum creatinine. Indian J Clin Biochem 2010; 25(4): 380-4.

Cho SY, Hur M. Neutrophil GelatinaseAssociated Lipocalin as a Promising Novel Biomarker for Early Detection of Kidney Injury. Ann Lab Med 2018; 38(5): 393-4.

Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 2017; 55(8): 1074-89.

Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 2009; 4(2): 337-44.

Krzeminska E, Wyczalkowska-Tomasik A, Korytowska N, Paczek L. Comparison of Two Methods for Determination of NGAL Levels in Urine: ELISA and CMIA. J Clin Lab Anal 2016; 30(6): 956-60.

Sajid M, Kawde AN, Daud M. Designs, formats and applications of lateral flow assay: A literature review. J Saudi Chem Soc 2015; 19(6): 689-705.

Lei L, Zhu J, Xia G, Feng H, Zhang H, Han Y. A rapid and user-friendly assay to detect the Neutrophil gelatinase-associated lipocalin (NGAL) using up-converting nanoparticles. Talanta 2017; 162: 339-44.

Yin M, Nie Y, Liu H, Liu L, Tang L, Dong Y, et al. Development of a europium nanoparticles lateral flow immunoassay for NGAL detection in urine and diagnosis of acute kidney injury. BMC Nephrol 2022;23(1):1-9.

Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic lateral flow immunoassays. Diagnostics 2020; 10(5): 288-311.

Chen X, Miao X, Ma T, Leng Y, Hao L, Duan H, et al. Gold nanobeads with enhanced absorbance for improved sensitivity in competitive lateral flow immunoassays. Foods 2021; 10(7).

Kusuma SAF, Harmonis JA, Pratiwi R, Hasanah AN. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. Sensors 2023; 23(19).

Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, et al. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv 2021. 3(10): 2679-98.

Saputra E, Santosa SJ. Digital Image-Based Colorimetry Utilizing Gold Nanoparticles ( AuNPs ): Portable Quantitative Detection of Cd 2+. IJCEA 2024; 15(2).

Carlucci F, Tabucchi A. Capillary electrophoresis in the evaluation of aminothiols in body fluids. J Chromatogr B Anal Technol Biomed Life Sci 2009; 877(28): 3347-57.

Wai JL, New SY. Cysteamine-coated gold nanoparticles for bimodal colorimetric detection with inverse sensitivity: A proof-ofconcept with lysozyme. RSC Adv 2019; 10(2): 1088-94.

Thangavelu RM, Kadirvel N, Balasubramaniam P, Viswanathan R. Ultrasensitive nano-gold labelled, duplex lateral flow immunochromatographic assay for early detection of sugarcane mosaic viruses. Sci Rep 2022; 12(1): 1-14.

Makris K. The role of the clinical laboratory in the detection and monitoring of acute kidney injury. J Lab Precis Med 2018; 3: 69.

Kang J, Zhang Y, Li X, Miao L, Wu A. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. ACS Appl Mater Interfaces 2016; 8(1): 1-5.

Roushani M, Valipour A, Valipour M. Layer-bylayer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels. Mater Sci Eng C 2016; 61: 344-50

Abu N, Mohd Bakhori N, Shueb RH. Lateral Flow Assay for Hepatitis B Detection: A Review of Current and New Assays. Micromachines 2023; 14(6): 1-29.