The role of PTEN on breast cancer
Keywords:
PTEN, Breast Cancer, Cell cycle, trastuzumabAbstract
Phosphatase and tensin homolog on chromosome 10 (PTEN) are tumor suppressors with phosphatase activity against phospholipids and proteins. The tumor suppressor activity of PTEN is attributed to its lipid phosphatase activity against PI (3,4,5) P3 (PIP3). The PIP3 is the phospholipid product of phosphoinositide-3-kinase (PI3K), the crucial signal transduction pathway.The PTEN is the essential negative regulator of PI3K and AKT pathway.The PTEN dephosphorylates PIP3 to PIP2, PTEN reverses the action of PI3K. PTEN plays significant roles in regulating biological processes, including growth, adhesion, migration, invasion, apoptosis, cancer, and other diseases. Therefore, level and function of PTEN are tightly regulated at transcription, post-transcription, and post-translation levels. Protein-protein interactions and their locations also regulate PTEN. Besides a tumor suppressor, PTEN is also a guardian of the genome frequently mutated and deleted in human cancer, including breast cancer. PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN have cell cycle deregulation and cell fate reprogramming. Breast cancer patients with PTEN loss had significantly poorer responses to trastuzumab-base therapy than those with normal PTEN. Thus PTEN loss is a powerful predictor of trastuzumab resistance. In addition, that PI3K-targeting therapies rescued PTEN loss-induced trastuzumab resistance. The understanding of the biological role of PTEN, the PTEN expression and activity are regulated, and PTEN dysregulation in human cancer, including breast cancer, could provide new strategies for cancer therapies.
References
Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, et al. Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997;15:356–62.
Brito MB, Goulielmaki E and Papakonstanti EA. Focus on PTEN regulation. Frontiers in Oncology | www.frontiersin.org doi: 10.3389/fonc.2015.00166
Besson A, Robbins SW, Yong VW. PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. Eur J Biochem 1999;263:605–11.
Davies MA. Regulation, role, and targeting of Akt in cancer. J Clin Oncol 2011;29:4715–7.doi:10.1200/JCO.2011.37.4751
Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001;70:535–602. doi:10.1146/annurev.biochem.70.1.535
Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997;7:776–89. doi:10.1016/S0960-9822(06)00336-8
Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 1998;95:15406–11.doi:10.1073/pnas.95.26.15406
Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphor-ylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998;273:13375– doi:10.1074/jbc.273.22.13375
Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phospho-inositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999;11:219–25. doi:10.1016/S0955-0674(99)80029-5
Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem 1998;67:481-507.
Karakas B, Bachman KE and Park BH. Mutation of the PIK3CA oncogene in human cancers. BJC 2006;94;455–9.
Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 2004;64:7002 10.
Yamada K M and Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001;114:
-82.
Gorbenko O, Panayotou G, Zhyvoloup A, Volkova D, Gout I, Filonenko V. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4. Mol Cell Biochem 2010;337:299–305. doi:10.1007/s11010-009-0312-1
Birnbaum Y, Nanhwan MK, Ling S, Perez-Polo JR, Ye Y, Bajaj M. PTEN upregulation may explain the development of insulin resistance and type 2 diabetes with high dose statins. Cardiovasc Drugs Ther 2014;28:447–57.doi:10.1007/s10557-014-6546-5
GarcÍa JM, Silva J, Pena C, Garcia V, Rodriguez R, Cruz MA, et al. Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer 2004;41:117–24. doi:10.1002/gcc.20062
He L. Posttranscriptional regulation of PTEN dosage by noncoding RNAs. Sci Signal 2010; 3:e39. doi:10.1126/scisignal.3146pe39
Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009;23:1327–37.
Ma F, Zhang J, Zhong L, Wang L, Liu Y, Wang Y, et al. Upregulated microR-NA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/beta-catenin signaling. Gene 2014;535:191–7. doi:10.1016/j. gene.2013.11.035
Milella M, Falcone I, Conciatori F, Incani UC, Curatolo AD, Inzerilli N, et al. Frontiers in Oncology | Molecular and Cellular Oncology 2015 | volume5 | Article24 | 1-14 .www.frontiersin.org doi:10.3389/fonc.2015.00024
Lin HK, Hu YC, Lee DK, Chang C. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol Endocrinol 2004;18:2409–23. doi:10.1210/me.2004-0117
Brandmaier A, Hou S-Q and Shen WH. Cell cycle control by PTEN. J Mol Biol 2017;429:2265-77.
Degraffenried LA, Fulcher L, Friedrichs WE, GrÜnwald V, Ray RB and Hidalgo M. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol 2004;15:1510–6. doi:10.1093/annonc/mdh388
Sun H, Lesche R, Li DM, Ciliental J, Zhang H, Gao J, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5-triphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999;96:6199–204.
Lian Z and Di Cristofano A: Class reunion: PTEN joins the nuclear crew. Oncogene 2005;24:7394 400.
Weng LP, Smith WM, Dahia PLM, Ziebold U, Gil E, Lees JA, et al. PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 1999;59:5808–14.
Ghosh AK, Grigorieva I, Steele R, Hoover RG, Ray RB. PTEN transcriptionally modulates c-myc gene expression in human breast carcinoma cells and is involved in cell growth regulation.Gene 1999;235(1–2):85–91.
Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000; 100:387–90.
Tanaka M, Koul D, Davies MA, Liebert M, Steck PA, Grossman HB. MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 2000;19:5406–12
Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004;6:117–27.
Tokunaga E, Oki E, Kimura Y, Yamanaka T, Egashira A, Nishida K, et al. Coexistence of the loss of heterozygosity at the PTEN locus and HER2 overexpression enhances the Akt activity thus leading to a negative progesterone receptor expression in breast carcinoma. Breast Cancer Res Treat. 2007;101:249-57.doi:10.1007/s10549-006-9295-8.
Liaw D, Marsh DJ, Li J, Dahia PLM, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997;16:64–7.
อMarsh DJ, Coulon V, Lunetta KL, Rocca-Serra P, Dahia PL, Zheng Z, et al. Mutation spectrum genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 1998;7:507-15.
Zhang HY, Liang F, Jia ZL, Song ST, Jiang ZF. PTEN mutation, methylation and expression in breast cancer patients. Oncol Lett 2013;6:161-8. doi:10.3892/ol.2013.1331.
Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, et al. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 1999;18:7034 45.
Tamguney T and Stokoe D: New insights into PTEN. J Cell Sci 2007;120:407179.
Freihoff D, Kempe A, Beste B, Wappenschmidt B, Kreyer E, Hayashi Y, et al. Exclusion of a major role for the PTEN tumour suppressor gene in breast carcinomas. Br J Cancer 1999;79: 754 8.
Khan S, Kumagai T, Vora J, Bose N, Sehgal I, Koeffler PH et al. PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer 2004;112:407 10.
Milovanovic Z, Dzodic R, Susnjar S, Plesinac-Karapandzic V, Juranic Z, Tatic S. PTEN protein expression in postmenopausal steroid receptor positive early breast cancer patients treated with adjuvant tamoxifen. J BUON 2011;16:46-51.
Shoman N, Klassen S, McFadden A, Bickis MG, Torlakovic E and Chibbar R. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Mod Pathol 2005;18:250 9.
Campbell RA, Bhat Nakshatri P, Patel NM, Constantinidou D, Ali S and Nakshatri H. Phosphatidylinositol 3 kinase/AKT mediated activation of estrogen receptor alpha: a new model for anti estrogen resistance. J Biol Chem 2001;276:9817 24.
Bose S, Crane A, Hibshoosh H, Mansukhani M, Sandweis L, Parsons R. Reduced expression of PTEN correlates with breast cancer progression. Hum Pathol 2002;33:405-9.
Perren A, Weng L, Boag A, Ziebold U, Thakore K, Dahia P, et al. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 1999;155:1253–60.
Depowski PL, Rosenthal SI, Ross JS. Loss of Expression of the PTEN Gene protein product Is associated with poor outcome in breast cancer. Mod Pathol 2001;14:672–6.
Tsutsui S, Inoue H, Yasuda K, Suzuki K, Higashi H, Era S, et al. Reduced expression of PTEN protein and its prognostic implications in
invasive ductal carcinoma of the breast. Oncology.2005;68:398-404.
Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, et al. PI3K Pathway Mutations and PTEN Levels in Primary and Metastatic Breast Cancer. Mol Cancer Ther 2011;10:1093-101.
Faratian D, Goltsov A, Lebedeva G, Sorokin A, Moodie S, Mullen P, et al. Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 2009;69:6713–20.
Palimaru I, Brügmann A, Wium-Andersen MK, Nexo E and Sorensen BS. Expression of PIK3CA, PTEN mRNA and PIK3CA mutations in primary breast cancer: association with lymph node metastases. SpringerPlus 2013;2:464.
Engin H, Baltali E, Guler N, Guler G, Tekuzman G, Uner A. Expression of PTEN, cyclin D1,P27/KIP1 in invasive ductal carcinomas of the breast and correlation with clinicopathological parameters. Bull Cancer 2006;93:E21–E26.
Perrone F, Lampis A, Orsenigo M, Di Bartolomeo M, Gevorgyan A, Losa M, et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 2009;20:84–90.doi:10.1093/annonc/mdn541
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Thailand's National Cancer Institute Foundation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความทีตีพิมพ์ในวารสารโรคมะเร็งนี้ถือว่าเป็นลิขสิทธิ์ของมูลนิธิสถาบันมะเร็งแห่งชาติ และผลงานวิชาการหรือวิจัยของคณะผู้เขียน ไม่ใช่ความคิดเห็นของบรรณาธิการหรือผู้จัดทํา