Acute effect of pm2.5 from biomass burning on asthma-related hospital visits in Mae Sot, Tak province of Thailand: A time-series study


  • Thanaphum Laithaisong Institute of Occupational and Environmental Medicine, Nopparat Rajathanee Hospital.
  • Supakorn Tultrairatana Institute of Occupational and Environmental Medicine, Nopparat Rajathanee Hospital.


Asthma Visit, Asthma, PM2.5, Biomass burning


   Although it is well studied that the ambient fine particulate matter with a diameter less than 2.5 micrometers (PM2.5) emitted from automobile or factory sources can increase the risk of asthmatic attack in human, there are such few evidences from the open-field biomass burning which has different chemical component. The goal of this study was to investigate the correlation between the daily PM2.5 concentrations and the numbers of hospital visits for asthma in Mae Sot area, Northern Thailand, where it was affected by the biomass-burning. This time-series study collected a data from 2,046 hospital visits for asthma in Mae Sot hospital via out-patient department and emergency room department from January 1, 2017 to December 31, 2017. During the same period where the data of hospital visits for Asthma collected, the daily air pollutants including PM2.5 (μg/m3), PM10 (μg/m3), CO (ppm), NO2 (ppb), O3 (ppb) were monitored at Mae Pa air-pollutant-monitoring station in Mae Sot. In this study, the association between daily PM2.5 and asthma-related hospital visits was analyzed using Negative Binomial Regression and Generalized Estimating Equations. The results found that, overall, daily average concentration levels of ambient PM2.5 were
significantly positively associated with asthma visits in all patient group [adjusted ORs of 1.012 (95% CI=1.000-1.024) per 1 μg/m3 increase in ambient PM2.5 level]. This was particularly high for male [adjusted ORs of 1.016 (95% CI=1.001-1.031)] and children younger than 15 years old [adjusted ORs of 1.022 (95% CI=1.002-1.042)]. In conclusion, the exposure to ambient PM2.5 from the biomass burning was associated with increased risk of asthma-related hospital visits particularly among male and young children patients. Asthma prevention strategies targeting at these high-risk sub-groups as well as the policies to control PM2.5 emission should therefore be implemented.


Download data is not yet available.


1. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf 2016;128:67-74.
2. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int 2015;74:136-43.
3. Zheng PW, Shen P, Ye ZH, Zhang ZY, Chai PF, Li D, et al. Acute effect of fine and coarse particular matter on cardiovascular visits in Ningbo, China. Environ Sci Pollut Res Int 2018;25:33548-55.
4. Wiwatanadate P. Acute air pollution-related symptoms among residents in Chiang Mai, Thailand. J Environ Health 2014;76:76-84.
5. Noh J, Sohn J, Cho J, Cho SK, Choi YJ, Kim C, et al. Short-term Effects of Ambient Air Pollution on Emergency Department Visits for Asthma: An Assessment of Effect Modification by Prior Allergic Disease History. J Prev Med Public Health 2016;49:329-41.
6. Fan J, Li S, Fan C, Bai Z, Yang K. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res Int 2016;23:843-50.
7. Wiwatanadate P, Liwsrisakun C. Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. Int J Hyg Environ Health 2011;214:251-7.
8. World Health Organization. Global health observatory data. [online] 2016 [cited 2018 Nov 1]; Available from: URL:
9. กาญจนา สวยสม, เกศศินี อุนะพำนัก, พันศักดิ์ ถิรมงคล, พิเชษฐ์ อธิภาคย์, วนิสา สุรพิพิธ, วิจารย์ สิมาฉายา, และคณะ. กรมควบคุมมลพิษ รู้รอบทิศมลพิษทางอากาศ บทเรียน แนวคิด และการจัดการ. กรุงเทพฯ: กชกร พับลิชชิ่ง; 2554.
10. สำนักจัดการคุณภาพอากาศและเสียง. รายงานสถานการณ์และคุณภาพอากาศประเทศไทย. [ออนไลน์]. 2560 [เข้าถึงเมื่อ 1 พ.ย.2561] เข้าถึงได้จาก: URL:
11. รายงานความเคลื่อนไหวการลงทุนอุตสาหกรรมของจังหวัดตาก. [ออนไลน์]. 2559 [เข้าถึงเมื่อ 1 พ.ย. 2561] เข้าถึงได้จาก: URL:
12. ข้อมูลของสำนักงานพัฒนาเทคโนโลยีอวกาศและภูมิสารสนเทศ (GISTDA) ตำแหน่งจุดความร้อนจากดาวเทียมระบบ MODIS เพื่อแสดงข้อมูลสถานการณ์ไฟป่ารายวัน. [ออนไลน์]. 2560 [เข้าถึงเมื่อ 1 พ.ย.2561] เข้าถึงได้จาก: URL:
13. Kim Y, Seo J, Kim JY, Lee JY, Kim H, Kim BM. Characterization of PM2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environ Sci Pollut Res Int 2018;25:4330-43.
14. Tao J, Zhang L, Cao J, Zhong L, Chen D, Yang Y, et al. Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China - With emphasis on ship emissions. Sci Total Environ 2017;574:1559-70.
15. Yujiro I, Suekazu N. Chemical Compositions of Primary PM2.5 Derived from Biomass Burning Emissions. Asian Journal of Atmospheric Environment. 2017;11(2):79-95.
16. Wagner JG, Morishita M, Keeler GJ, Harkema JR. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies. Environmental health : a global access science source. 2012;11:45.
17. Thailand’s Tobacco Use Surveillance: Smoking Prevalence, 1991-2006 [online]. 2006 [cited 2018 Nov 10]; Available from:
18. Bennett WD, Zeman KL, Jarabek AM. Nasal contribution to breathing and fine particle deposition in children versus adults. J Toxicol Environ Health A 2008;71:227-37.
19. Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy 2015;70:245-56.
20. Schwartz J. Air pollution and children’s health. Pediatrics 2004;113(Supplement 3):1037-43.
21. Kuo CY, Pan RH, Chan CK, Wu CY, Phan DV, Chan CL. Application of a time-stratified case-crossover design to explore the effects of air pollution and season on childhood asthma hospitalization in cities of differing urban patterns: Big data analytics of government open data. Int J Environ Res Public Health 2018;15:647.
22. Chen C, Li C, Li Y, Liu J, Meng C, Han J, et al. Short-term effects of ambient air pollution exposure on lung function: A longitudinal study among healthy primary school children in China. Sci Total Environ 2018;645:1014-20.
23. Wu J, Zhong T, Zhu Y, Ge D, Lin X, Li Q. Effects of particulate matter (PM) on childhood asthma exacerbation and control in Xiamen, China. BMC Pediatrics. 2019;19:194.
24. Carroll KN, Hartert TV. The impact of respiratory viral infection on wheezing illnesses and asthma exacerbations. Immunol Allergy Clin North Am 2008;28:539-viii.
25. MacDowell AL, Bacharier LB. Infectious triggers of asthma. Immunol Allergy Clin North Am. 2005;25:45-66.
26. Mannino DM, Homa DM, Redd SC. Involuntary smoking and asthma severity in children: data from the Third National Health and Nutrition Examination Survey. Chest 2002;122:409-15.
27. Yoo S, Kim HB, Lee SY, Kim BS, Kim JH, Yu J, et al. Effect of active smoking on asthma symptoms, pulmonary function, and BHR in adolescents. Pediatr Pulmonol 2009;44:954-61.
28. Fauroux B, Sampil M, Quénel P, Lemoullec Y. Ozone: A trigger for hospital pediatric asthma emergency room visits. Pediatr Pulmonol 2000;30:41-6.
29. Zheng XY, Ding H, Jiang LN, Chen SW, Zheng JP, Qiu M, et al. Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: A systematic review and meta-analysis. PloS one 2015;10:e0138146.
30. Li X, Chen Q, Zheng X, Li Y, Han M, Liu T, et al. Effects of ambient ozone concentrations with different averaging times on asthma exacerbations: A meta-analysis. The Science of the total environment 2019;691:549-61.
31. Obihara CC, Kimpen JL, Beyers N. The potential of Mycobacterium to protect against allergy and asthma. Curr Allergy Asthma Rep 2007;7:223-30.
32. Giannoni M, Martellini T, Del Bubba M, Gambaro A, Zangrando R, Chiari M, et al. The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy). Environ Pollut 2012;167:7-15.
33. Zhang T, Claeys M, Cachier H, Dong S, Wang W, Maenhaut W, et al. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment 2008;42:7013-21.
34. Won YK, Hwang TH, Roh EJ, Chung EH. Seasonal patterns of asthma in children and adolescents presenting at emergency departments in Korea. Allergy, asthma & immunology research 2016;8:223-9.
35. Wisniewski JA, McLaughlin AP, Stenger PJ, Patrie J, Brown MA, El-Dahr JM, et al. A comparison of seasonal trends in asthma exacerbations among children from geographic regions with different climates. Allergy and asthma proceedings 2016;37:475-81.
36. Fan J, Li S, Fan C, Bai Z, Yang K. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ Sci Pollut Res Int 2016;23:843-50.
37. Chang JH, Hsu SC, Bai KJ, Huang SK, Hsu CW. Association of time-serial changes in ambient particulate matters (PMs) with respiratory emergency cases in Taipei’s Wenshan District. PLoS One 2017;12:e0181106.
38. Luong LM, Phung D, Sly PD, Morawska L, Thai PK. The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam. Sci Total Environ 2017;578:249-55.
39. Cheng MH, Chen CC, Chiu HF, Yang CY. Fine particulate air pollution and hospital admissions for asthma: a case-crossover study in Taipei. J Toxicol Environ Health A 2014;77:1075-83.
40. World Health Organization. Ambien outdoor air quality and health. [online]. 2018 [cited 2018 Nov 5]. Available from:
41. สำนักจัดการคุณภาพอากาศและเสียง. ข้อมูลดัชนีคุณภาพอากาศ. [ออนไลน์]. 2561 [เข้าถึงเมื่อ 1 พ.ย.2561] เข้าถึงได้จาก: URL:



How to Cite

Laithaisong ธ, Tultrairatana ศ. Acute effect of pm2.5 from biomass burning on asthma-related hospital visits in Mae Sot, Tak province of Thailand: A time-series study. JPMAT [Internet]. 2020 May 12 [cited 2022 Jun. 29];10(1):36-48. Available from:



Research Article