Lactate Reimagined as an Exerkine: Emerging Evidence, Physiological Benefits, Controversies, and Clinical Applications
Keywords:
Lactate, Exerkine, Exercise physiology, Exercise medicineAbstract
Misconceptions surrounding lactate have persisted for centuries; once dismissed as a mere by-product of anaerobic metabolism and a culprit of fatigue, lactate is now recognized as a powerful exerkine with broad physiological influence across multiple systems. This shift in understanding redefines lactate as more than a waste product, recognizing its critical role in inter-organ communication and physiological regulation during and after exercise. This narrative review explores the multifaceted functions of lactate, highlighting its impact on metabolic regulation, neuroplasticity, immune modulation, muscle adaptation, and angiogenesis. Lactate's interaction with the G-protein-coupled receptor 81 (GPR81) mediates numerous beneficial processes, including anti-inflammatory responses, upregulation of brain-derived neurotrophic factor (BDNF), mitochondrial biogenesis through PGC-1α activation, and vascular endothelial growth factor (VEGF) expression, which supports angiogenesis. While the majority of scientists acknowledge lactate’s vital role in energy homeostasis and systemic signaling, controversies persist concerning the extent of its effects and their dependence on exercise context, intensity, and individual variability. Future research directions include the development of lactate-based therapeutic applications, personalized exercise prescriptions, and integrative approaches with other exerkines. The potential of lactate to enhance patient care, from neurorehabilitation to chronic disease management, underscores its promise as a powerful target for health optimization and performance enhancement. This narrative review aims to deepen our understanding of lactate’s complex roles and guide innovative strategies in health sciences, exercise physiology, and clinical care
References
Bartoloni, B., Mannelli, M., Gamberi, T., & Fiaschi, T. (2024). The multiple roles of lactate in the skeletal muscle. Cells, 13(14), 1177. https://doi.org/10.3390/cells13141177
Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., & Spiegelman, B. M., (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. https://doi.org/10.1038/nature10777
Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A., Matos, C., Dehne, N., Renné, T., Schroder, K., Siska, P. J., Brochez, L., Meissner, F., Schempp, C., Schulze-Osthoff, K., Kempa, S., Gebhardt, C., & Kreutz, M. (2016). LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metabolism, 24(5), 657–671. https://doi.org/10.1016/j.cmet.2016.08.011
Brooks, G. A. (2020). The lactate shuttle: Updated perspectives from exercise metabolism research. Journal of Applied Physiology, 129(6), 1770–1782. https://doi.org/10.1152/japplphysiol.00546.2020
Brooks, G. A., Osmond, A. D., Arevalo, J. A., Duong, J. J., Curl, C. C., Moreno-Santillan, D. D., & Leija, R. G. (2023). Lactate as a myokine and exerkine: Drivers and signals of physiology and metabolism. Journal of Applied Physiology, 134(3), 529–548. https://doi.org/10.1152/japplphysiol.00497.2022
Colegio, O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V., Cyrus, N., Brokowski, C. E., Eisenbarth, S. C., Phillips, G. M., & Medzhitov, R. (2014). Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 513(7519), 559–563. https://doi.org/10.1038/nature13490
El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, R., Emmanuel, N., Karnib, N., El-Ghandour, R., Nasrallah, P., Bilen, M., Ibrahim, P., Younes, J., Haidar, E. A., Barmo, N., Jabre, V., Stephan, J. S., & Sleiman, S. F. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). Journal of Neuroscience, 39(13), 2369-2382. https://doi.org/10.1523/JNEUROSCI.1661-18.2019
Fisher, F. M., & Maratos-Flier, E. (2016). Understanding the physiology of FGF21. Annual Review of Physiology, 78, 223–241. https://doi.org/10.1146/annurev-physiol-021115-105339
Gladden, L. B. (2004). Lactate metabolism: A new paradigm for the third millennium. The Journal of Physiology, 558(1), 5–30. https://doi.org/10.1113/jphysiol.2003.058701
Gladden, L. B. (2020). Revisiting the classic paradigms of lactate metabolism: Contemporary views. Sports Medicine, 50(3), 1–11. https://doi.org/10.1113/jphysiol.2003.058701
Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4
Hoier, B., & Hellsten, Y. (2014). Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation, 21(4), 301–314. https://doi.org/10.1111/micc.12117
Huh, J. Y. (2018). The role of exercise-induced myokines in regulating metabolism. Archives of Pharmacal Research, 41(1), 14–29. https://doi.org/10.1007/s12272-017-0994-y
Kim, K. H., Jeong, Y. T., Oh, H., Kim, S. H., Cho, J. M., Kim, Y. N., Kim, S. S., Kim, D. H., Hur, K. Y., Kim, H. K., Ko, T., Han, J., Kim, H. L., Kim, J., Back, H. S., Komatsu, M., Chen, H., Chan, D. C., Konishi, M., Itoh, N., Choi, C. S., & Lee, M. S. (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing FGF21 as a mitokine. Nature Medicine, 19(1), 83–92. https://doi.org/10.1038/nm.3014
Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., Ohyama, Y., Kurabayashi, M., Kaname, T., Kume, E., Iwasaki, H., Iida, A., Shiraki-Iida, T., Nishikawa, S., Nagai. R., & Nabeshima, Y. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 390(6655), 45–51. https://doi.org/10.1038/ 36285
Lee, S. J., Reed, L. A., Davies, M. V., Girgenrath, S., Goad, M. E., Tomkinson, K. N., Wright, J. F., Barker, C., Ehrmantraut, G., Holmstrom, J., Trowell, B., Gertz, B., Man- Jiang, S., Sebald, S. M., Matzuk, M., Li, E., Liang, L., Quattlebaum, E., Stotish, R. L., & Wolfman, N. M. (2001). Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proceedings of the National Academy of Sciences, 102(50), 18117–18122. https://doi.org/10.1073/pnas.0505996102
Liu, H., Pan, M., Liu, M., Zeng, L., Li, Y., Huang, Z., Guo, C., & Wang, H. (2024). Lactate: A rising star in tumors and inflammation. Frontiers in Immunology, 15, 1496390. https://doi. org/10.3389/fimmu.2024.1496390
Llibre, A., Kucuk, S., Gope, A., Certo, M., & Mauro, C. (2025). Lactate: A key regulator of the immune response. Immunity, 58(3), 535-554. https://doi.org/10.1016/j.immuni.2025.02.008
Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: From metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19(4), 235–249. https://doi.org/10.1038/nrn.2018.19
Moon, H. Y., Becke, A., Berron, D., Becker, B., Sah, N., Benoni, G., Emma Janke, E., Lubejko., S. T., Greig, N. H., Mattison, J. A., Duzel, E., & van Praag, H. (2016). Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metabolism, 24(2), 332–340. https://doi.org/10.1016/j.cmet.2016.05.025
Olfert, I. M., Baum, O., Hellsten, Y., & Egginton, S. (2016). Advances and challenges in skeletal muscle angiogenesis. American Journal of Physiology-Heart and Circulatory Physiology, 310(3), H326–H336. https://doi.org/10.1152/ajpheart.00635.2015
Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8(8), 457–465. https://doi.org/10.1038/nrendo.2012.49
Pellerin, L., & Magistretti, P. J. (2012). Sweet sixteen for ANLS. Journal of Cerebral Blood Flow & Metabolism, 32(7), 1152–1166. https://doi.org/10.1038/jcbfm.2011.149
Rodgers, B. D., & Garikipati, D. K. (2021). Clinical, agricultural, and evolutionary biology of myostatin: A comparative review. Endocrine Reviews, 42(4), 549–584. https://doi.org/10.1210/er.2008-0003
Sahu, A., Mamiya, H., Shinde, S. N., Cheikhi, F., Winter, L. L., Vo, N. V., Rando, A. Barchowsky & F. AmbrosiV., Tang, W. Y., Croix, C. St., Sanders, L. H., Franti, M., Van Houten, B., Rando, T. A., Barchowsky. A., & Ambrosio, F. (2018). Age-related declines in α-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nature Communications, 9(1), 4859. https://doi.org/10.1038/s41467-018-07253-3
San-Millán, I., & Brooks, G. A. (2018). Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Medicine, 48, 467-479. https://doi.org/10.1007/s40279-017-0751-x
Shang, Q., Bian, X., Zhu, L., Liu, J., Wu, M., & Lou, S. (2023). Lactate mediates high-intensity interval training-induced promotion of hippocampal mitochondrial function through the GPR81-ERK1/2 pathway. Antioxidants, 12(12), 2087. https://doi.org/10.1002/jnr.23593
Van Hall, G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta Physiologica, 199(4), 499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x
Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., Ma, D., Lin, J. D., Greenberg. M. E., & Spiegelman, B. M. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, 18(5), 649–659. https://doi.org/10.1016/j.cmet.2013.09.008
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., Ding, J., Czyz, D. M., Hu, R., Ye, Z., He, M., Gozani, O., Roeder, R. G., Becker, L. B., Zhao, Y., & Shi, Y. (2019). Metabolic regulation of gene expression by histone lactylation. Nature, 574(7779), 575–580. https://doi.org/10.1038/s41586-019-1678-1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Christian University of Thailand

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.