การพัฒนาเว็บแอปพลิเคชันประเมินควำมเสี่ยงของกำรเกิดภำวะหำยใจล้มเหลว ภำยหลังถอดท่อช่วยหำยใจในผู้ป่วยวิกฤตอำยุรกรรม
คำสำคัญ:
risk assessment, respiratory failure, web applicationบทคัดย่อ
การวิจัยและพัฒนานี้มีวัตถุประสงค์เพื่อพัฒนาเว็บแอปพลิเคชันประเมินความเสี่ยงของการเกิด ภาวะหายใจล้มเหลวภายหลังถอดท่อช่วยหายใจ (post-extubation respiratory failure: PERF) (PERF risk assessment web application: PRAWA) และประเมินประสิทธิภาพของ PRAWA ในการทำนายการเกิด PERF ดำเนินการศึกษา 2 ระยะ ได้แก่ 1) ทบทวนวรรณกรรมเพื่อพัฒนา PRAWA และ 2) ประเมินประสิทธิภาพ ของ PRAWA โดยใช้ข้อมูลจากเวชระเบียนผู้ป่วยที่ได้รับการถอดท่อช่วยหายใจในระหว่างเดือนมกราคม ถึง เดือนตุลาคม 2565 จำนวน 150 ราย เครื่องมือวิจัย ประกอบด้วย 1) คู่มือการใช้งาน PRAWA 2) แบบบันทึก ข้อมูลผู้ป่วย 3) แบบบันทึก PRAWA และ 4) แบบวินิจฉัยภาวะ PERF วิเคราะห์ข้อมูลด้วยสถิติเชิงพรรณา และทดสอบประสิทธิภาพของ PRAWA โดยใช้ receiver operating characteristics (ROC) curve : ROC curve
ผลการศึกษา ได้งานวิจัย 21 เรื่อง นำมาสังเคราะห์และพัฒนา PRAWA ซึ่งมี 18 ข้อ คะแนนรวม 30 คะแนน PRAWA ประเมินปัจจัยเสี่ยงของการเกิดภาวะ PERF 2 ด้าน คือ 1) ปัจจัยด้านผู้ป่วย ได้แก่ อายุ เพศ การวินิจฉัยโรค โรคประจำตัว ข้อบ่งชี้ในการใส่ท่อช่วยหายใจ “คะแนน” ความรุนแรง ทางการเจ็บป่วย (acute physiology and chronic health evaluation : APACHE II) ระดับฮีโมโกลบิน ระดับอัลบูมินในเลือด ค่า PaO2/FiO2 หรือ SpO2/FiO2 ratio ระดับความรู้สึกตัว ประสิทธิภาพการไอขับเสมหะ และปริมาณเสมหะ และ 2) ปัจจัยด้านการรักษาพยาบาล ได้แก่ การฟอกเลือด ภาวะติดเชื้อในกระแสเลือด การได้รับ ยากระตุ้นความดันโลหิต การได้รับยานอนหลับ ระยะเวลาใส่ท่อช่วยหายใจ และภาวะปอดอักเสบที่สัมพันธ์กับ เครื่องช่วยหายใจ PRAWA มีค่าความตรงตามเนื้อหา เท่ากับ 1 และมีค่าความเชื่อมั่น เท่ากับ 0.97 ในการทดสอบ ประสิทธิภาพของ PRAWA พบว่า ที่จุดตัดคะแนน 10 คะแนน PRAWA มีค่าความไว ร้อยละ 88.6 ค่าความจำเพาะ ร้อยละ 87.2 และมีค่าพื้นที่ใต้กราฟเส้นโค้งของ ROC curve (AUC) เท่ากับ 0.95 (95%CI=0.91-0.98; p<.001)
ผลการศึกษาครั้งนี้ แสดงให้เห็นว่า PRAWA มีประสิทธิภาพสูงในการจำแนกความเสี่ยงของการเกิด ภาวะ PERF และสามารถใช้ในการคัดกรองความเสี่ยงเพื่อดำเนินการป้องกันการเกิดภาวะ PERF ตามระดับ ของความเสี่ยงต่อไป
References
Thille AW, Muller G, Gacouin A, Coudroy R, Decavèle M, Sonneville R, et al. Effect of postextubation high-flow nasal oxygen with noninvasive ventilation vs high-flow nasal oxygen alone on reintubation among patients at high risk of extubation failure. JAMA 2019; 322(15):1465-75.
Chao CM, Lai CC, Cheng AC, Chiang SR, Liu WL, Ho CH, et al. Establishing failure predictors for the planned extubation of overweight and obese patients. PLOS ONE 2017;12(8):e0183360.
Wu TJ, Shiao JC, Yu HL, Lai RS. An integrative index for predicting extubation outcomes after successful completion of a spontaneous breathing trial in an adult medical intensive care unit. J Intensive Care Med 2019;34(8): 640-5.
Bansal V, Smischney NJ, Kashyap R, Li Z, Marquez A, Diedrich DA, et al. Reintubation summation calculation: A predictive score for extubation failure in critically ill patients. Front Med 2022;8: 789440.
Fujii E, Fujino K, Tanaka-Mizuno S, Eguchi Y. Variation of risk factors for cause-specific reintubation: A preliminary study. Can Respir J 2018; 2018:3654251.
Jaber S, Quintard H, Cinotti R, Asehnoune K, Arnal JM, Guitton C, et al. Risk factors and outcomes for airway failure versus non-airway failure in the intensive care unit: A multicenter observational study of 1514 extubation procedures. Crit Care 2018;22(1):236-48.
Saiphoklang N, Auttajaroon J. Incidence and outcome of weaning from mechanical ventilation in medical wards at Thammasat University Hospital.PLOSONE2018;13(10):e0205106.
Gao F, Yang LH, He HR, Ma XC, Lu J, Zhai YJ, et al. The effect of reintubation on ventilator-associated pneumonia and mortality among mechanically ventilated patients with intubation: A systematic review and meta-analysis. Heart Lung 2016;45(4): 363-71.
Baptistella AR, Sarmento FJ, Silva KR, Baptistella SF, Taglietti M, Zuquello RA, et al. Predictive factors of weaning from mechanical ventilation and extubation outcome: A systematic review. J Crit Care 2018;48:56-62.
Cheng AC, Cheng KC, Chen CM, Hsing SC, Sung MY. The outcome and predictors of failed extubation in intensive care patients-the elderly is an important predictor. Int J Gerontol 2011;5(4):206-11.
Kansal A, Dhanvijay S, Li A, Phua J, Cove ME, Ong WD, et al. Predictors and outcomes of high-flow nasal cannula failure following extubation: A multicentre observational study. Ann Acad Med Singap 2021;50(6):467-73.
Dos Reis HFC, Gomes-Neto M, Almeida MLO, Silva MF, Guedes LBA, Martinez BP, et al. Development of a risk score to predict extubation failure in patients with traumatic brain injury. J Crit Care 2017; 42:218-22.
Hsieh MH, Hsieh MJ, Chen CM, Hsieh CC, Chao CM, Lai CC. An artificial neural network model for predicting successful extubation in intensive care units. J Clin Med 2018;7(9):240.
Elkholy MM, Sadek SH, Elmorshedy RM, Abdulmoez MS. Predictors of extubation failure in mechanically ventilated patients with chronic obstructive pulmonary disease. Egypt J Chest Dis Tuberc 2021;70(2):288-94.
Miu T, Joffe AM, Yanez ND, Khandelwal N, Dagal AH, Deem S, et al. Predictors of reintubation in critically ill patients. Respir Care 2014;59(2):178-85.
Thille AW, Boissier F, ben Ghezala H, Razazi K, Mekontso-Dessap A, Brun-Buisson C. risk factors for and prediction by caregivers of extubation failure in ICU patients. Crit Care Med 2015; 43(3):613-20.
Kaur R, Vines DL, Patel AD, Lugo-Robles R, Balk RA. Early identification of extubation failure using integrated pulmonary index and high-risk factors. Respir Care 2021;66(10):1542-8.
Torrini F, Gendreau S, Morel J, Carteaux G, Thille AW, Antonelli M, et al. Prediction of extubation outcome in critically ill patients: A systematic review and meta-analysis. Crit Care 2021;25(1):391.
Lee ES, Jiann Lim DT, Taculod JM, Sahagun JT, Otero JP, Teo K, et al. Factors associated with reintubation in an intensive care unit: A prospective observational study. Indian Journal of Critical Care Medicine 2017; 21(3):131-7.
Guzatti NG, Klein F, Oliveira JA, Rático GB, Cordeiro MF, Marmitt LP, et al. Predictive factors of extubation failure in COVID-19 mechanically ventilated patients. J Intensive Care Med 2022;37(9): 1250-5.
Piriyapatsom A, Williams EC, Waak K, Ladha KS, Eikermann M, Schmidt UH. Prospective observational study of predictors of re-intubation following extubation in the surgical ICU. Respir Care 2016;61(3): 306-15.
Mahmood S, Alani M, Al-Thani H, MahmoodI, El-Menyar A, Latifi R. Predictors of reintubation in trauma intensive care unit: Qatar experience. Oman Med J 2014;29(4):289-93.
Nantsupawat N, Nantsupawat T, Limsuwat C, Sutamtewagul G, Nugent K. Factors associated with reintubation in patients with chronic obstructive pulmonary disease. Qual Manag Health Care 2015; 24(4):200-6.
Baptistella AR, Mantelli LM, Matte L, Carvalho MEDRU, Fortunatti JA, Costa IZ, et al. Prediction of extubation outcome in mechanically ventilated patients: Development and validation of the extubation predictive score (ExPreS). PLoS One 2021;16(3): e0248868.
Moonchan P, Kasatpibal N, Boonchieng W. Web application development for post-discharge surgical site infection surveillance. Nurs J 2021;48(2):37-50. (in Thai)
Girard TD, Alhazzani W, Kress JP, Ouellette DR, Schmidt GA, Truwit JD, et al. An official American thoracic society/American college of chest physicians clinical practice guideline: Liberation from mechanical ventilation in critically ill adults. Rehabilitation protocols, ventilator liberation protocols, and cuff leak tests. Am J Respir Crit Care Med 2017;195(1):120-33.
Buckwalter KC, Cullen L, Hanrahan K, Kleiber C, McCarthy AM, Rakel B, et al. Iowa model of evidence-based practice: Revisions and validation. World-views on Evidence-Based Nursing 2017;14(3):175-82.
JBI. JBI levels of evidence 2014 [Internet]. JBI [cited 2023 Arp 26]. Available from: https://jbi.global/sites/default/ files/2019-05/JBI-Levels-of-evidence_2014_0.pdf
Wang S, Zhang L, Huang K, Lin Z, Qiao W, Pan S. Predictors of extubation failure in neurocritical patients identified by a systematic review and meta-analysis. PLoS ONE 2014;9(12):e112198.
Chen H, Cohen P, Chen S. How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communicat Stat 2010;39(4):860-4.
Polit DF, Beck CT. Essentials of nursing research: Appraising evidence for nursing practice. 8th ed. Philadelphia: Lippincott Williams, & Wilkins; 2014.
McHugh ML. Inter-rater reliability: The kappa statistic. Biochemia Medica 2012;22(3); 276-82.
Sarakarn P, Munpolsri P. Optimal cut-off points for receiver operating characteristic (ROC) curve analysis in developing tools of health innovations: Example using SATATA. Thai Bull Pharm Sci 2021;16(1):93-108. (in Thai)
Ray P, Manach YL, Riou B,Houle TT. Statistical evaluation of a biomarker. Anesthesiology 2010; 112(4);1023-40.
Downloads
เผยแพร่แล้ว
How to Cite
ฉบับ
บท
License
Copyright (c) 2023 วารสารพยาบาลศาสตร์และสุขภาพ
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
วารสารพยาบาลศาสตร์และสุขภาพเป็นเจ้าของลิขสิทธิ์ในการเผยแพร่ผลงานที่ตีพิมพ์ห้ามผู้ใดนำบทความที่ได้รับการตีพิมพ์ในวารสารพยาบาลศาสตร์และสุขภาพไปเผยแพร่ในลักษณะต่าง ๆ ดังนี้ การนำบทความไปเผยแพร่ออนไลน์ การถ่ายเอกสารบทความเพื่อกิจกรรมที่ไม่ใช่การเรียนการสอน การส่งบทความไปตีพิมพ์เผยแพร่ที่อื่น ยกเว้นเสียแต่ได้รับอนุญาตจากวารสารพยาบาลศาสตร์และสุขภาพ