C30. Research Progress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells induced by Traditional Chinese Medicine Monomer

Main Article Content

Mengxing Yin
Dezhi Zhou
Xiufang Li
Xiaosan Su
Watchala Thanusin
Fu Jia

Abstract

As the population ages, osteoporosis has become a global bone disease, increasing the risk of fractures and seriously affecting human health. Bone marrow mesenchymal stem cells (BMSCs) have the potential to differentiate in different directions. Inducing osteogenesis and inhibiting adipogenic differentiation are key to preventing and treating osteoporosis. Traditional Chinese medicine (TCM) is a bone metabolic disease with obvious therapeutic effects. Research results show that the part between traditional Chinese medicine and its purification material can effectively induce bone marrow mesenchymal stem cells to osteoblast differentiation. Focusing on the physiological characteristics of BMSCs, this paper summarized the mechanism of TCM monomers in osteogenic differentiation.

Article Details

How to Cite
Yin , M., Zhou, . D., Li , X. ., Su , X., Thanusin, W. ., & Jia, . F. (2022). C30. Research Progress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells induced by Traditional Chinese Medicine Monomer. Journal of Health Science and Alternative Medicine. Retrieved from https://he01.tci-thaijo.org/index.php/jhealthscialternmed/article/view/257804
Section
Original Article

References

Li Y, Yang F, Gao M, et al. miR-149-3p Regulates the Switch between Adipogenic and Osteogenic Differentiation of BMSCs by Targeting FTO[J]. Mol Ther Nucleic Acids, 2019,17:590-600.

Qadir A, Liang S, Wu Z, et al. Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells[J]. Int J Mol Sci, 2020,21(1).

Qiu X M, Wang L, Gui Y Y, et al. BSNXD modulates mesenchymal stem cell differentiation into osteoblasts in a postmenopausal osteoporotic mouse model[J]. Int J Clin Exp Pathol, 2015,8(5):4408-4417.

Yang A, Yu C, Lu Q, et al. Mechanism of Action of Icariin in Bone Marrow Mesenchymal Stem Cells[J]. Stem Cells Int, 2019,2019:5747298.

Wei Q, He M, Chen M, et al. Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression[J]. Biomed Pharmacother, 2017,91:581-589.

Xue L, Jiang Y, Han T, et al. Comparative proteomic and metabolomic analysis reveal the antiosteoporotic molecular mechanism of icariin from Epimedium brevicornu maxim[J]. J Ethnopharmacol, 2016,192:370-381.

Chung B H, Kim J D, Kim C K, et al. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells[J]. Biochem Biophys Res Commun, 2008,376(2):404-408.

Zhang S, Feng P, Mo G, et al. Icariin influences adipogenic differentiation of stem cells affected by osteoblast-osteoclast co-culture and clinical research adipogenic[J]. Biomed Pharmacother, 2017,88:436-442.

Shen Z, Chen Z, Li Z, et al. Total Flavonoids of Rhizoma Drynariae Enhances Angiogenic-Osteogenic Coupling During Distraction Osteogenesis by Promoting Type H Vessel Formation Through PDGF-BB/PDGFR-beta Instead of HIF-1alpha/ VEGF Axis[J]. Front Pharmacol, 2020,11:503524.

陈丽辉. 骨碎补总黄酮(强骨胶囊)治疗老年骨质疏松症的效果及对骨密度的影响[J]. 临床合理用药杂志, 2018,11(11):60-61.

Zhang Y, Jiang J, Shen H, et al. Total flavonoids from Rhizoma Drynariae (Gusuibu) for treating osteoporotic fractures: implication in clinical practice[J]. Drug Des Devel Ther, 2017,11:1881-1890.

史岩, 马秋野, 喻一东, 等. 骨碎补总黄酮促进骨质疏松性骨折愈合中参与Wnt/β-catenin信号通路的初步研究[J]. 中医药学报, 2018,46(02):49-52.

孙奇峰, 尹文哲, 高原, 等. 失重下骨碎补总黄酮经MAPK通路促间充质干细胞向成骨细胞分化研究[J]. 中医药学报, 2016,44(04):10-13.

Dong G C, Ma T Y, Li C H, et al. A study of Drynaria fortunei in modulation of BMP-2 signalling by bone tissue engineering[J]. Turk J Med Sci, 2020,50(5):1444-1453.

Yu K E, Alder K D, Morris M T, et al. Re-appraising the potential of naringin for natural, novel orthopedic biotherapies[J]. Ther Adv Musculoskelet Dis, 2020,12:1759720X-20966135X.

Lin F X, Du SX, Liu D Z, et al. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway[J]. Am J Transl Res, 2016,8(11):5098-5107.

Yu G Y, Zheng G Z, Chang B, et al. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway[J]. Stem Cells Int, 2016,2016:7130653.

Chen X, Zhang S, Chen X, et al. Emodin promotes the osteogenesis of MC3T3-E1 cells via BMP-9/Smad pathway and exerts a preventive effect in ovariectomized rats[J]. Acta Biochim Biophys Sin (Shanghai), 2017,49(10):867-878.

Kang D M, Yoon K H, Kim J Y, et al. CT imaging biomarker for evaluation of emodin as a potential drug on LPS-mediated osteoporosis mice[J]. Acad Radiol, 2014,21(4):457-462.

Yang F, Yuan P W, Hao Y Q, et al. Emodin enhances osteogenesis and inhibits adipogenesis[J]. BMC Complement Altern Med, 2014,14:74.

Liu M, Wei J, Bai J, et al. [Effect of emodin on rat bone marrow mesenchymal stem cell proliferation and mRNA expressions of hematopoietic growth factors][J]. Nan Fang Yi Ke Da Xue Xue Bao, 2014,34(5):736-739.

Lee S U, Shin H K, Min Y K, et al. Emodin accelerates osteoblast differentiation through phosphatidylinositol 3-kinase activation and bone morphogenetic protein-2 gene expression[J]. Int Immunopharmacol, 2008,8(5):741-747.

Xiang M X, Xu Z, Su H W, et al. Emodin-8-O-beta-D-glucoside from Polygonum amplexicaule D. Don var. sinense Forb. promotes proliferation and differentiation of osteoblastic MC3T3-E1 cells[J]. Molecules, 2011,16(1):728-737.

Yuan X, Bi Y, Yan Z, et al. Psoralen and Isopsoralen Ameliorate Sex Hormone Deficiency-Induced Osteoporosis in Female and Male Mice[J]. Biomed Res Int, 2016,2016:6869452.

Ren Y, Song X, Tan L, et al. A Review of the Pharmacological Properties of Psoralen[J]. Front Pharmacol, 2020,11:571535.

Ge L, Cui Y, Cheng K, et al. Isopsoralen Enhanced Osteogenesis by Targeting AhR/ERalpha[J]. Molecules, 2018,23(10).

常培学, 李海波, 方其超, 等. 异补骨脂素联合锌治疗对1型糖尿病大鼠骨量、骨密度及骨强度的影响[J]. 中国骨质疏松杂志, 2020,26(10):1470-1474.

Wang J, Li S F, Wang T, et al. Isopsoralen-mediated suppression of bone marrow adiposity and attenuation of the adipogenic commitment of bone marrow-derived mesenchymal stem cells[J]. Int J Mol Med, 2017,39(3):527-538.

Ming L, Ge B, Chen K, et al. [Effects of isopsoralen on bone marrow stromal stem cells differentiate and proliferate in vitro][J]. Zhongguo Zhong Yao Za Zhi, 2011,36(15):2124-2128.

Hong-Min R, Ya-Ling D, Jin-Lian Z, et al. [Research progress on processing history evolution, chemical components and pharmacological effects of Polygonati Rhizoma][J]. Zhongguo Zhong Yao Za Zhi, 2020,45(17):4163-4182.

Du L, Nong M N, Zhao J M, et al. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/beta-catenin signalling pathway[J]. Sci Rep, 2016,6:32261.

Peng X, He J, Zhao J, et al. Polygonatum Sibiricum Polysaccharide Promotes Osteoblastic Differentiation Through the ERK/GSK-3beta/beta-Catenin Signaling Pathway In Vitro[J]. Rejuvenation Res, 2018,21(1):44-52.

Zong S, Zeng G, Zou B, et al. Effects of Polygonatum sibiricum polysaccharide on the osteogenic differentiation of bone mesenchymal stem cells in mice[J]. Int J Clin Exp Pathol, 2015,8(6):6169-6180.

Chern C M, Zhou H, Wang Y H, et al. Osthole ameliorates cartilage degradation by downregulation of NF-kappaB and HIF-2alpha pathways in an osteoarthritis murine model[J]. Eur J Pharmacol, 2020,867:172799.

Lin J, Zhu J, Wang Y, et al. Chinese single herbs and active ingredients for postmenopausal osteoporosis: From preclinical evidence to action mechanism[J]. Biosci Trends, 2017,11(5):496-506.

Tang D Z, Hou W, Zhou Q, et al. Osthole stimulates osteoblast differentiation and bone formation by activation of beta-catenin-BMP signaling[J]. J Bone Miner Res, 2010,25(6):1234-1245.

Zhang Z R, Leung W N, Li G, et al. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo[J]. Nutrients, 2017,9(6).

Zheng X, Yu Y, Shao B, et al. Osthole improves therapy for osteoporosis through increasing autophagy of mesenchymal stem cells[J]. Exp Anim, 2019,68(4):453-463.

Alexander I M. Pharmacotherapeutic management of osteoprosis and osteopenia[J]. Nurse Pract, 2009,34(6):30-40, 41.

Wong R H, Thaung Z J, Xian C J, et al. Regular Supplementation With Resveratrol Improves Bone Mineral Density in Postmenopausal Women: A Randomized, Placebo-Controlled Trial[J]. J Bone Miner Res, 2020,35(11):2121-2131.

Li J, Xin Z, Cai M. The role of resveratrol in bone marrow-derived mesenchymal stem cells from patients with osteoporosis[J]. J Cell Biochem, 2019,120(10):16634-16642.

Hu C, Li L. The application of resveratrol to mesenchymal stromal cell-based regenerative medicine[J]. Stem Cell Res Ther, 2019,10(1):307.

Yoon D S, Choi Y, Choi S M, et al. Different effects of resveratrol on early and late passage mesenchymal stem cells through beta-catenin regulation[J]. Biochem Biophys Res Commun, 2015,467(4):1026-1032.

Oh J H, Karadeniz F, Seo Y, et al. Effect of Quercetin 3-O-beta-D-Galactopyranoside on the Adipogenic and Osteoblastogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells[J]. Int J Mol Sci, 2020,21(21).

Li P, Kong J, Chen Z, et al. Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway[J]. J Nat Med, 2019,73(1):104-113.

Yang Z, He C, He J, et al. Curcumin-mediated bone marrow mesenchymal stem cell sheets create a favorable immune microenvironment for adult full-thickness cutaneous wound healing[J]. Stem Cell Res Ther, 2018,9(1):21.

Yang Q, Leong S A, Chan K P, et al. Complex effect of continuous curcumin exposure on human bone marrow-derived mesenchymal stem cell regenerative properties through matrix metalloproteinase regulation[J]. Basic Clin Pharmacol Toxicol, 2021,128(1):141-153.