C13. Effects of circRNA in Notch Pathway on Differentiation and Maturation of Oligodendrocyte Progenitor Cells in Cerebral Palsy

Main Article Content

Yuanwang Wang
Shouyao Zhang
Liuying Yang
Tianlei Gao
Xinghe Zhang
Pawat Thanavachirasin
Xiantao Tai

Abstract

CircRNAs are ubiquitous non-coding RNAs, which are richly expressed in brain tissues and participate in the development and signaling of the nervous system and regulate complex functions and various neural activities of the brain. The Notch pathways can regulate multiple processes of cell morphology by regulating cell damage and apoptosis, inflammation, nerve repair and angiogenesis, and other processes involved in the occurrence and development of diseases. The Notch pathway critically regulates the differentiation and maturation of oligodendrocyte progenitor cells (OPCs), and the abnormal expression of circRNA can regulate the differentiation and maturation of OPCs through many pathways, including the Notch pathway, thus participating in the occurrence and development of cerebral palsy. This paper systematically reviewed the effects of circRNA on the differentiation and maturation of OPCs in cerebral palsy by regulating the Notch pathway to provide new ideas for the diagnosis, treatment, and research of cerebral palsy.

Article Details

How to Cite
Wang, . Y., Zhang , S., Yang , L., Gao , T., Zhang , X., Thanavachirasin, P. ., & Tai , X. (2022). C13. Effects of circRNA in Notch Pathway on Differentiation and Maturation of Oligodendrocyte Progenitor Cells in Cerebral Palsy. Journal of Health Science and Alternative Medicine, 131–137. Retrieved from https://he01.tci-thaijo.org/index.php/jhealthscialternmed/article/view/257772
Section
Original Article

References

唐久来,秦炯,邹丽萍,等. 中国脑性瘫痪康复指南(2015):第一部分[J].中国康复医学杂志, 2015, 30(07):747-754.

封玉霞,庞伟,李鑫,等. 中国0~6岁儿童脑瘫患病率的Meta分析[J].中国全科医学, 2021, 24(05):603-607.

李晓捷,邱洪斌,姜志梅,等. 中国十二省市小儿脑性瘫痪流行病学特征[J].中华实用儿科临床杂志, 2018, 33(05):378-383.

Amankwah N,Oskoui M,Garner R,et al. Cerebral palsy in Canada, 2011-2031: results of a microsimulation modelling study of epidemiological and cost impacts.[J]. Health promotion and chronic disease prevention in Canada: research, policy and practice, 2020, 40(2): 25-37.

Lumei Liu, Jian Wang, Ramin Khanabdali,et al. Circular RNAs: Isolation, characterization and their potential role in diseases.RNA Biol, 2017,14(12):1715-1721.

Hanan M, Soreq H, Sebastian Kadenera S. CircRNAs in the brain. RNA biology, 2017, 14 (8):1028-1034.

Piovesan A,Antonaros F,Vitale L,et al. Human protein-coding genes and gene feature statistics in 2019[J]. BMC Res Notes. 2019, 12(1):315.

Shi Y,Jia X,Xu J. The new function of circRNA: translation[J]. Clin Transl Oncol. 2020,22(12):2162-2169.

Singh DK,Ling EA,Kaur C. Hypoxia and myelination deficits in the developing brain[J]. Int J Dev Neurosci. 2018,0:3-11.

Kristensen LS,Andersen MS,Stagsted LVW,et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet. 2019, 20(11):675-691.

Chen LL. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol. 2016, 17(4):205-11.

Yang Y, ujiao W,Fang W,et al. The roles of miRNA, lncRNA and CircRNA in the development of osteoporosis[J]. Biol Res. 2020, 53(1):40.

Mahmoudi E,Cairns MJ. Circular RNAs are temporospatially regulated throughout development and ageing in the rat[J]. Sci Rep. 2019, 9(1):2564.

You X,Vlatkovic I,Babic A,et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nat Neurosci. 2015, 18(4):603-610.

Akhter R. Circular RNA and Alzheimer's Disease[J]. Adv Exp Med Biol. 2018, 1087:239-243.

Ma N,Pan J, Ye X,et al. Whole-Transcriptome Analysis of APP/PS1 Mouse Brain and Identification of circRNA-miRNA-mRNA Networks to Investigate AD Pathogenesis[J]. Mol Ther Nucleic Acids. 2019,18:1049-1062.

Yang L,Han B,Zhang Z,et al. Extracellular Vesicle-Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models[J]. Circulation. 2020, 142(6):556-574.

Chen W,Wang H,Feng J,et al. Overexpression of circRNA circUCK2 Attenuates Cell Apoptosis in Cerebral Ischemia-Reperfusion Injury via miR-125b-5p/GDF11 Signaling[J]. Mol Ther Nucleic Acids. 2020,22:673-683.

Lin SP,Ye S,Long Y,et al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury[J]. Biochem Biophys Res Commun. 2016, 471(1):52-6.

Keirstead HS,Blakemore WF. The role of oligodendrocytes and oligodendrocyte progenitors in 8CNS remyelination[J]. Adv Exp Med Biol. 1999, 468:183-97.

Rizzo P,Miele L,Ferrari R. The Notch pathway: a crossroad between the life and death of the endothelium[J]. Eur Heart J. 2013, 34(32):2504-9.

Siebel C,Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease[J]. Physiol Rev. 2017, 97(4):1235-1294.

Conti B,Slemmons KK,Rota R,et al. Recent Insights into Notch Signaling in Embryonal Rhabdomyosarcoma[J]. Curr Drug Targets. 2016, 17(11):1235-44.

Aparicio E, athieu P,Pereira Luppi M,et al. The Notch signaling pathway: its role in focal CNS demyelination and apotransferrin-induced remyelination[J]. J Neurochem. 2013, 127(6):819-36.

Bray SJ. Notch signalling: a simple pathway becomes complex[J]. Nat Rev Mol Cell Biol. 2006, 7(9):678-89.

Carre A,Rachdi L,Tron E,et al. Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development[J]. PLoS One. 2011, 6(2):e16752.

Katoh M,Katoh M. Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer[J]. Int J Oncol. 2007, 31(2):461-6.

Wang L,Jiang T,Huang X,et al. The protective role of the miR-25-mediated notch signaling pathway in the memory capacity and brain tissue of mice with central nervous system infections[J]. Am J Transl Res. 2021, 13(5):4835-4843.

Zhang T, Guan P, Liu W, et al. Copper stress induces zebrafish central neural system myelin defects via WNT/NOTCH-hoxb5b signaling and pou3f1/fam168a/fam168b DNA methylation[J]. Biochim Biophys Acta Gene Regul Mech. 2020, 1863(10):194612.

Mathieu Patricia A,Almeira Gubiani María F,Rodríguez Débora,et al. Demyelination-Remyelination in the Central Nervous System: Ligand-Dependent Participation of the Notch Signaling Pathway[J]. Toxicological sciences: an official journal of the Society of Toxicology, 2019, 171(1): kfz130.

Zhao X,He X,Han X, et al. MicroRNA-mediated control of oligodendrocyte differentiation[J]. Neuron. 2010, 65(5):612-626.

Byun SH,Kwon M,Lee SM,et al. PACT increases mammalian embryonic neural stem cell properties by facilitating activation of the Notch signaling pathway[J]. Biochem Biophys Res Commun. 2019, 513(2):392-397.

Stavsky M, Mor O, Mastrolia SA,et al. Cerebral Palsy-Trends in Epidemiology and Recent Development in Prenatal Mechanisms of Disease, Treatment, and Prevention[J]. Front Pediatr. 2017; 5:21.

Novak I, Morgan C, Adde L, et al. Early,Accurate Diagnosis and Early Intervention in Cerebral Palsy:Advances in Diagnosis and Treatment[J]. JAMA Pediatr. 2017, 171(9):897-907.

Jiang H, Liu H, Huang T, et al. Structural network performance for early diagnosis of spastic cerebral palsy in periventricular white matter injury[J]. Brain Imaging Behav. 2021, 15(2):855-864.

Ballester-Plané J, Schmidt R, Laporta-Hoyos O, et al. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function[J]. Hum Brain Mapp. 2017, 38(9):4594-4612.

Filley CM, Fields RD. White matter and cognition: making the connection[J]. J Neurophysiol. 2016, 116(5):2093-2104.

Cainelli E, Arrigoni F, Vedovelli L. White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection[J]. Prog Neurobiol. 2020,193:101845.

Stadelmann C,Timmler S,Barrantes-Freer A,et al. Myelin in the Central Nervous System: Structure, Function, and Pathology[J]. Physiol Rev. 2019, 99(3):1381-1431.

Purger D,Gibson EM,Monje M. Myelin plasticity in the central nervous system[J]. Neuropharmacology. 2016, 110(Pt B):563-573.

äkel S, Agirre E, Mendanha Falcão A,et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis[J]. Nature. 2019, 566(7745):543-547.

Bradl M,Lassmann H. Oligodendrocytes: biology and pathology[J]. Acta Neuropathol. 2010, 119(1):37-53.

Hoon AH Jr,Vasconcellos Faria A. Pathogenesis, neuroimaging and management in children with cerebral palsy born preterm[J]. Dev Disabil Res Rev. 2010, 16(4):302-12.

Novak CM,Ozen M,Burd I. Perinatal Brain Injury: Mechanisms, Prevention, and Outcomes[J]. Clin Perinatol. 2018, 45(2):357-375.

Galichet C,Clayton RW,Lovell-Badge R. Novel Tools and Investigative Approaches for the Study of Oligodendrocyte Precursor Cells (NG2-Glia) in CNS Development and Disease[J]. Front Cell Neurosci. 2021,15:673132.

Elbaz B,Popko B. Molecular Control of Oligodendrocyte Development[J]. Trends Neurosci. 2019, 42(4):263-277.

Tsai HH,Niu J,Munji R,et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system[J]. Science. 2016, 351(6271):379-384.

Levine JM,Reynolds R,Fawcett JW. The oligodendrocyte precursor cell in health and disease[J]. Trends Neurosci. 2001, 24(1):39-47.

Kirby L,in J,Cardona JG,et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination[J]. Nat Commun. 2019, 10(1):3887.

Huang W,Bhaduri A,Velmeshev D,et al. Origins and Proliferative States of Human Oligodendrocyte Precursor Cells[J]. Cell. 2020, 182(3):594-608.e11.

Cayre M, Falque M,Mercier O,et al. Myelin Repair: From Animal Models to Humans[J]. Front Cell Neurosci. 2021,15:604865.

Hesp ZC,Goldstein EZ,Miranda CJ,et al. Chronic oligodendrogenesis and remyelination after spinal cord injury in mice and rats[J]. J Neurosci. 2015, 35(3):1274-90.

Czopka T,Ffrench-Constant C,Lyons DA. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo[J]. Dev Cell. 2013, 25(6):599-609.

Zhou H,Wang X, heng R,et al. Analysis of long non-coding RNA expression profiles in neonatal rats with hypoxic-ischemic brain damage[J]. J Neurochem. 2019, 149(3):346-361.

Machowska-Sempruch K,Bajer-Czajkowska A,Makarewicz K,et al. A Novel NOTCH3 Gene Mutation in a Polish CADASIL Family[J]. J Stroke Cerebrovasc Dis. 2019, 28(3):574-576.

Gao L,Yang L Cui H. GSK-3β inhibitor TWS119 alleviates hypoxic-ischemic brain damage via a crosstalk with Wnt and Notch signaling pathways in neonatal rats[J]. Brain Res. 2021, 1768:147588.

Xu ZX,Xu L,Wang JQ,et al. Expression changes of the notch signaling pathway of PC12 cells after oxygen glucose deprivation[J]. Int J Biol Macromol. 2018t, 118(Pt B):1984-1988.

Chandrababu K,Senan M,Krishnan LK. Exploitation of fibrin-based signaling niche for deriving progenitors from human adipose-derived mesenchymal stem cells towards potential neural engineering applications[J]. Sci Rep. 2020, 10(1):7116.

Snyder JL,Kearns CA,Appel B. Fbxw7 regulates Notch to control specification of neural precursors for oligodendrocyte fate[J]. Neural Dev. 2012, 7:15.

Adams KL,Riparini G,Banerjee P,et al. Endothelin-1 signaling maintains glial progenitor proliferation in the postnatal subventricular zone[J]. Nat Commun. 2020, 11(1):2138.

Liu CY,Al-Ward H,Ngaffo Mekontso F,et al. Experimental Study on the Correlation between miRNA-373 and HIF-1α, MMP-9, and VEGF in the Development of HIE[J]. Biomed Res Int. 2021, 2021:5553486.

Yang G,Zhao Y. Overexpression of miR-146b-5p Ameliorates Neonatal Hypoxic Ischemic Encephalopathy by Inhibiting IRAK1/TRAF6/TAK1/NF-αB Signaling[J]. Yonsei Med J. 2020, 61(8):660-669.

Milbreta U,Lin J,Pinese C,et al. Scaffold-Mediated Sustained, Non-viral Delivery of miR-219/miR-338 Promotes CNS Remyelination[J]. Mol Ther. 2019, 27(2):411-423.

Du WW,Zhang C,Yang W,et al. Identifying and Characterizing CircRNA-Protein Interaction[J]. Theranostics. 2017,7(17):4183-4191.

Xu H,Zhang Y, Qi L,et al. NFIX Circular RNA Promotes Glioma Progression by Regulating miR-34a-5p via Notch Signaling Pathway[J]. Front Mol Neurosci. 2018,11:225.

Juknat A,Gao F,Coppola G, et al. miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-Effect of cannabinoids[J]. PLoS One. 2019, 14(2):e0212039.

Saeb S,Azari H,Mostafavi-Pour Z,et al. 9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways[J]. Iran J Med Sci. 2018, 43(5):523-532.