The Blood-Brain Connection of Alzheimer’s Disease: Another Glance after Quarter of Century
Main Article Content
Abstract
Alzheimer’s disease (AD) is one of complicated health problems particularly in the elderly population. A systematic review was used to extract relevant and advanced information to the AD from several sources of information. This paper is presented the mechanism of the association between neurovascular dysfunction and Alzheimer’s disease, and also the importance and latest procedures of AD detection. The combination uses of peripheral blood markers of brain microcirculation lesions and multiple structural, functional, and electrophysiological measures discussed here would constitute an informative panel to aid timely diagnosis.
Article Details
JHSAM publishes all articles in full open access, meaning unlimited use and reuse of articles with appropriate credit to the authors.
All our articles are published under a Creative Commons "CC-BY-NC-ND 4.0". License which permits use, distribution and reproduction in any medium,
provided that the original work is properly cited and is used for noncommercial purposes.
References
Law A, Gauthier S, Quirion R. Say NO to Alzheimer’s disease: The putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Research. Brain Research Reviews. 2001a; 35(1): 73–96. DOI: https://doi.org/10.1016/s0165-0173(00)00051-5
Ravona-Springer R, Davidson M, Noy S. Is the distinction between Alzheimer’s disease and vascular dementia possible and relevant? Dialogues in Clinical Neuroscience. 2003; 5(1): 7–15.
Frisardi V, Solfrizzi V, Seripa D, Capurso C, Santamato A, Sancarlo D, et al. Metabolic-cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Research Reviews. 2010; 9(4); 399–417. DOI: https://doi.org/10.1016/j.arr.2010.04.007
Tini G, Scagliola R, Monacelli F, La Malfa G, Porto I, Brunelli C, et al. Alzheimer’s disease and cardiovascular disease: a particular association [Review Article]. Cardiology Research and Practice. 2020. DOI: https://doi.org/10.1155/2020/2617970
Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Molecular Medicine. 2014; 6(9): 1105–20. DOI: https://doi.org/10.15252/emmm.201404156
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nature Neuroscience. 2018; 21(10): 1318–31. DOI: https://doi.org/10.1038/s41593-018-0234-x
Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends in Neurosciences. 2005; 28(4): 202–8.DOI: https://doi.org/10.1016/j.tins.2005.02.001
Cai W, Zhang K, Li P, Zhu L, Xu J, Yang B, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Research Reviews. 2017; 34: 77–87. DOI: https://doi.org/10.1016/j.arr.2016.09.006
Joo IL, Lai AY, Bazzigaluppi P, Koletar MM, Dorr A, Brown ME, et al. Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease. Scientific Reports. 2017; 7(1): 46427. DOI: https://doi.org/10.1038/srep46427
Lacalle-Aurioles M, Mateos-Pérez JM, Guzmán-De-Villoria JA, Olazarán J, Cruz-Orduña I, Alemán-Gómez Y, et al. Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer’s disease. Journal of Cerebral Blood Flow and Metabolism. 2014; 34(4): 654–9. DOI: https://doi.org/10.1038/jcbfm.2013.241
Shabir O, Berwick J, Francis SE. Neurovascular dysfunction in vascular dementia, Alzheimer’s and atherosclerosis. BMC Neuroscience. 2018; 19(1): 62. DOI: https://doi.org/10.1186/s12868-018-0465-5
Jo WK, Law ACK, Chung SK. The neglected co-star in the dementia drama: the putative roles of astrocytes in the pathogeneses of major neurocognitive disorders. Molecular Psychiatry. 2014; 19(2): 159–67. DOI: https://doi.org/10.1038/mp.2013.171
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology. 2018; 14(3): 133–50. DOI: https://doi.org/10.1038/nrneurol.2017.188
Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, et al.
Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nature Medicine. 2019; 25(2): 270–6. DOI: https://doi.org/10.1038/s41591-018-0297-y
Endres M, Laufs U, Liao JK, Moskowitz MA. Targeting eNOS for stroke protection. Trends in Neurosciences. 2004; 27(5), 283–9. DOI: https://doi.org/10.1016/j.tins.2004.03.009
Law A, Gauthier S, Quirion R. Neuroprotective and neurorescuing effects of isoform-specific nitric oxide synthase inhibitors, nitric oxide scavenger, and antioxidant against beta-amyloid toxicity. British Journal of Pharmacology. 2001b; 133(7): 1114–24. DOI: https://doi.org/10.1038/sj.bjp.0704179
Grünewald T, Beal MF. NOS knockouts and neuroprotection. Nature Medicine. 1999; 5(12): 1354–5. DOI: https://doi.org/10.1038/70918
Silva DD. Evidence for a neurotoxic role of nitric oxide synthase on serotonin neurons. Investigative Ophthalmology & Visual Science. 2006; 47(13): 4852–3.
Tang X, Li Z, Zhang W, Yao Z. Nitric oxide might be an inducing factor in cognitive impairment in Alzheimer’s disease via downregulating the monocarboxylate transporter 1. Nitric Oxide: Biology and Chemistry. 2019; 91: 35–41. DOI; https://doi.org/10.1016/j.niox.2019.07.006
Park L, Hochrainer K, Hattori Y, Ahn SJ, Anfray A, Wang G, et al. Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nature Neuroscience. 2020; 23(9): 1079–89. DOI: https://doi.org/10.1038/s41593-020-0686-7
Austin SA, Santhanam AV, Hinton DJ, Choi DS, Katusic ZS. Endothelial nitric oxide deficiency promotes Alzheimer’s disease pathology. Journal of Neurochemistry. 2013; 127(5): 691–700. DOI: https://doi.org/10.1111/jnc.12334
Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proceedings of the National Academy of Sciences. 2008; 105(4): 1347–52. DOI: https://doi.org/10.1073/pnas.0711568105
Prpar Mihevc S, Zakošek Pipan M, Štrbenc M, Rogelj B, Majdič G. Nitrosative stress in the frontal cortex from dogs with canine cognitive dysfunction. Frontiers in Veterinary Science. 2020; 7. DOI: https://doi.org/10.3389/fvets.2020.573155
Bonnar O, Hall CN. First, tau causes NO problem. Nature Neuroscience. 2020; 23(9): 1035–6. DOI: https://doi.org/10.1038/s41593-020-0691-x
Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nature Neuroscience. 2020; 23(6): 701–6. DOI: https://doi.org/10.1038/s41593-020-0624-8
King A, Szekely B, Calapkulu E, Ali H, Rios F, Jones S, et al. The Increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimer’s disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis. Brain Sciences. 2020; 10(8): 503. DOI: https://doi.org/10.3390/brainsci10080503
Shi H, Koronyo Y, Rentsendorj A, Regis GC, Sheyn, J, Fuchs DT, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer’s disease retina. Acta Neuropathologica. 2020; 139(5); 813–36. DOI: https://doi.org/10.1007/s00401-020-02134-w
[28] Bhowmick S, D’Mello V, Caruso D, Wallerstein A, Abdul-Muneer PM. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Experimental Neurology. 2019; 317: 260–70. DOI: https://doi.org/10.1016/j.expneurol.2019.03.014
Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020; 581(7806): 71–6. DOI: https://doi.org/10.1038/s41586-020-2247-3
Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2-year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. The Lancet. 2015; 385(9984): 2255–63. DOI: https://doi.org/10.1016/S0140-6736(15)60461-5
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes—evidence reviewed. Journal of Diabetes Science and Technology. 2008; 2(6): 1101–13. DOI: https://doi.org/10.1177/193229680800200619
Gauthier SG. Alzheimer’s disease: the benefits of early treatment. European Journal of Neurology. 2005; 12 (S3): 11–6. DOI: https://doi.org/10.1111/j.1468-1331.2005.01322.x
Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. report from the IFCN-sponsored panel of experts. Clinical Neurophysiology. 2020; 131(6): 1287–310. DOI: https://doi.org/10.1016/j.clinph.2020.03.003
d’Abramo C, D’Adamio L, Giliberto L. Significance of blood and cerebrospinal fluid biomarkers for Alzheimer’s disease: sensitivity, specificity and potential for clinical use. Journal of Personalized Medicine. 2020; 10(3): 116. DOI: https://doi.org/10.3390/jpm10030116
Zou K, Abdullah M, Michikawa M. Current biomarkers for Alzheimer’s disease: from CSF to blood. Journal of Personalized Medicine. 2020; 10(3): 85. DOI: https://doi.org/10.3390/jpm10030085
Johnson P, Lundqvist C, Lindgren A, Ferencz I, Alling C, Ståhl E. Cerebral complications after cardiac surgery assessed by S-100 and NSE levels in blood. Journal of Cardiothoracic and Vascular Anesthesia. 1995; 9(6): 694–9. DOI: https://doi.org/10.1016/s1053-0770(05)80231-9
Gasecka A, Siwik D, Gajewska M, Jaguszewski MJ, Mazurek T, Filipiak KJ, et al. Early biomarkers of neurodegenerative and neurovascular disorders in diabetes. Journal of Clinical Medicine. 2020; 9(9).DOI: https://doi.org/10.3390/jcm9092807
Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Current Opinion in Cell Biology. 2015; 32: 121–30. DOI: https://doi.org/10.1016/j.ceb.2015.02.004
Abdelhak A, Huss A, Kassubek J, Tumani H, Otto M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Scientific Reports. 2018; 8. DOI: https://doi.org/10.1038/s41598-018-33158-8
Oeckl P, Halbgebauer S, Anderl-Straub S, Steinacker P, Huss AM, Neugebauer H, et al. Glial fibrillary acidic protein in serum is increased in Alzheimer’s disease and correlates with cognitive impairment. Journal of Alzheimer’s Disease. 2019; 67(2): 481–8. DOI: https://doi.org/10.3233/JAD-180325
Arnaoutakis G, George T, Wang K, Wilson M, Allen J, Robinson C, et al. Serum levels of neuron-specific ubiquitin carboxyl-terminal esterase-L1 predict brain injury in a canine model of hypothermic circulatory arrest. The Journal of Thoracic and Cardiovascular Surgery. 2011; 142: 902-10. DOI: https://doi.org/10.1016/j.jtcvs.2011.06.027
Wu L, Ai ML, Feng Q, Deng S, Liu ZY, Zhang LN, et al. Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. Journal of Critical Care. 2019; 52: 172–9. DOI: https://doi.org/10.1016/j.jcrc.2019.04.018
Montagne A, Nation D, Pa J, Sweeney M, Toga A, Zlokovic B. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathologica. 2016; 131. DOI: https://doi.org/10.1007/s00401-016-1570-0
Valkanova V, Ebmeier KP. Neuroimaging in dementia. Maturitas. 2014; 79(2): 202–8. DOI: https://doi.org/10.1016/j.maturitas.2014.02.016
Joie RL, Visani AV, Baker SL, Brown JA, Bourakova V, Cha J, et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Science Translational Medicine. 2020; 12(524). DOI: https://doi.org/10.1126/scitranslmed.aau5732
Mormino EC, Papp KV. Amyloid accumulation and cognitive decline in clinically normal older individuals: implications for aging and early Alzheimer’s disease. Journal of Alzheimer’s Disease. 2018; 64(S1): S633–46. DOI: https://doi.org/10.3233/JAD-179928
Taheri S, Gasparovic C, Shah NJ, Rosenberg GA. Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magnetic Resonance in Medicine. 2011; 65(4): 1036–42. DOI: https://doi.org/10.1002/mrm.22686
Lin L, Xing G, Han Y. Advances in resting state neuroimaging of mild cognitive impairment. Frontiers in Psychiatry. 2018; 9. DOI: https://doi.org/10.3389/fpsyt.2018.00671
Li X, Wang F, Liu X, Cao D, Cai L, Jiang X, Yang X, et al. Changes in brain function networks in patients with amnestic mild cognitive impairment: a resting-state fMRI study. Frontiers in Neurology. 2020; 11. DOI: https://doi.org/10.3389/fneur.2020.554032
Gu Y, Miao S, Han J, Liang Z, Ouyang G, Yang J, et al. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy. Journal of Neural Engineering. 2018; 15(3): 035005. DOI: https://doi.org/10.1088/1741-2552/aa9ee9
Zhang F, Roeyers H. Exploring brain functions in autism spectrum disorder: a systematic review on functional near-infrared spectroscopy (fNIRS) studies. International Journal of Psychophysiology. 2019; 137: 41–53. DOI: https://doi.org/10.1016/j.ijpsycho.2019.01.003
Querques G, Borrelli E, Sacconi R, De Vitis L, Leocani L, Santangelo R, et al. Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Scientific Reports. 2019; 9(1): 63. DOI: https://doi.org/10.1038/s41598-018-37271-6
Ravi Teja KV, Tos Berendschot T, Steinbusch H, Carroll Webers A, Praveen Murthy R, Mathuranath P. Cerebral and retinal neurovascular changes: a biomarker for Alzheimer’s disease. Journal of Gerontology & Geriatric Research. 2017; 6(4). DOI: https://doi.org/10.4172/2167-7182.1000447
Bennys K, Rondouin G, Vergnes C, Touchon J. Diagnostic value of quantitative EEG in Alzheimer’s disease. Neurophysiologie Clinique/Clinical Neurophysiology. 2001; 31(3): 153–60. DOI: https://doi.org/10.1016/S0987-7053(01)00254-4
Borgheai SB, Deligani RJ, McLinden J, Zisk A, Hosni SI, Abtahi M, et al. Multimodal exploration of non-motor neural functions in ALS patients using simultaneous EEG-fNIRS recording. Journal of Neural Engineering. 2019; 16(6): 066036. DOI: https://doi.org/10.1088/1741-2552/ab456c
Jafarian A, Litvak V, Cagnan H, Friston KJ, Zeidman P. Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG. NeuroImage. 2020; 216: 116734. DOI: https://doi.org/10.1016/j.neuroimage.2020.116734
Yang D, Hong KS, Yoo SH, Kim CS. Evaluation of neural degeneration biomarkers in the prefrontal cortex for early identification of patients with mild cognitive impairment: an fNIRS study. Frontiers in Human Neuroscience. 2019;13. DOI: https://doi.org/10.3389/fnhum.2019.00317
Gaubert S, Raimondo F, Houot M, Corsi MC, Naccache L, Diego Sitt, J, et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain. 2019; 142(7), 2096–12. DOI: https://doi.org/10.1093/brain/awz150