Delayed Versus Immediate Placement of Direct Resin Composite Restorations Following Vital Pulp Therapy with ProRoot® Mineral Trioxide Aggregate or Biodentine™: A Review of the Literature

Main Article Content

Nattakan Chaipattanawan
Chanika Manmontri
Ju-Chun FanChiang
Papimon Chompu-inwai

Abstract

Abstract


The quality of final restoration is one among other important factors that should be considered for successful outcome of vital pulp therapy (VPT) because inadequate coronal seal can allow bacterial penetration reaching to the pulp tissue, resulting in failure of VPT. Resin composite has been one of the most commonly used direct intra-coronal permanent restorations, whereas calcium silicate-based cements (CSCs), especially ProRoot® MTA and BiodentineTM, are currently recommended as the pulp dressing materials of choice for VPT. However, resin composites could not be immediately and directly placed as final restorations following VPT with ProRoot® MTA or BiodentineTM because of prolonged setting time of these two cements. Moreover, the suitable time elapsed for the placement of resin composites over these two cements were still controversial. Therefore, this literature article reviewed the previous in vitro and clinical studies related to direct resin composite restorations following VPT with ProRoot® MTA or BiodentineTM.

Article Details

How to Cite
Chaipattanawan, N., Manmontri , C. ., FanChiang, J.-C., & Chompu-inwai, P. (2021). Delayed Versus Immediate Placement of Direct Resin Composite Restorations Following Vital Pulp Therapy with ProRoot® Mineral Trioxide Aggregate or Biodentine™: A Review of the Literature. Chiang Mai Dental Journal, 42(2), 44–58. Retrieved from https://he01.tci-thaijo.org/index.php/cmdj/article/view/248754
Section
Review article
Author Biographies

Chanika Manmontri , Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University

Name   Chanika Manmontri

Education             Master of Science in Dentistry (Pediatric Dentistry)

                               Diplomate, American Board of Pediatric Dentistry

Office                     Division of Pediatric Dentistry,

                               Department of Orthodontics and Pediatric Dentistry,

                               Faculty of Dentistry, Chiang Mai University

E-mail                    chanika.m@cmu.ac.th

Ju-Chun FanChiang, Charming Dental Clinic, Taiwan

Name                    Ju-Chun FanChiang

Education             Master of Science in Dentistry (Prosthodontics)

Office                    Charming Dental Clinic, Tainan, Taiwan

E-mail                    jcfanchiang2001@yahoo.com.tw

Papimon Chompu-inwai, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University

Name                    Papimon Chompu-inwai

Education             Master of Science in Dentistry (Pediatric Dentistry)

                               Diplomate, American Board of Pediatric Dentistry

Office                     Division of Pediatric Dentistry,

                               Department of Orthodontics and Pediatric Dentistry,

                               Faculty of Dentistry, Chiang Mai University

E-mail                    papimon.c@cmu.ac.th

References

Aguilar P, Linsuwanont P. Vital pulp therapy in vital permanent teeth with cariously exposed pulp: a systematic review. J Endod 2011; 37(5): 581-587.

Gandolfi MG, Spagnuolo G, Siboni F, et al. Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response. Clin Oral Investig 2015; 19(8): 2075-2089.

Mente J, Hufnagel S, Leo M, et al. Treatment outcome of mineral trioxide aggregate or calcium hydroxide direct pulp capping: long-term results. J Endod 2014; 40(11): 1746-1751.

Barthel CR, Rosenkranz B, Leuenberg A, Roulet JF. Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study. J Endod 2000; 26(9): 525-528.

Parinyaprom N, Nirunsittirat A, Chuveera P, et al. Outcomes of direct pulp capping by using either ProRoot Mineral Trioxide Aggregate or Biodentine in permanent teeth with carious pulp exposure in 6- to 18-year-old patients: a randomized controlled trial. J Endod 2018; 44(3): 341-348.

Uesrichai N, Nirunsittirat A, Chuveera P, Srisuwan T, Sastraruji T, Chompu-Inwai P. Partial pulpotomy with two bioactive cements in permanent teeth of 6-to-18-year-old patients with signs and symptoms indicative of irreversible pulpitis: a non-inferiority randomised controlled trial. Int Endod J 2019; 52(6): 749-759.

Lynch, Opdam NJ, Hickel R, et al. Guidance on posterior resin composites: academy of operative dentistry - european section. J Dent 2014; 42(4): 377-383.

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review - part I: chemical, physical, and antibacterial properties. J Endod 2010; 36(1): 16-27.

Rajasekharan S, Martens LC, Cauwels R, Anthonappa RP, Verbeeck RMH. Biodentine material characteristics and clinical applications: a 3 year literature review and update. Eur Arch Paediatr Dent 2018; 19(1): 1-22.

About I. Biodentine: from biochemical and bioactive properties to clinical applications. G Ital Endod 2016; 30(2): 81-88.

Bjørndal L, Laustsen MH, Reit C. Root canal treatment in Denmark is most often carried out in carious vital molar teeth and retreatments are rare. Int Endod J 2006; 39(10): 785-790.

Caplan DJ, Cai J, Yin G, White BA. Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent 2005; 65(2): 90-96.

Randow K, Glantz PO. On cantilever loading of vital and non-vital teeth. an experimental clinical study. Acta Odontol Scand 1986; 44(5): 271-277.

Ou KL, Chang CC, Chang WJ, Lin CT, Chang KJ, Huang HM. Effect of damping properties on fracture resistance of root filled premolar teeth: a dynamic finite element analysis. Int Endod J 2009; 42(8): 694-704.

Taha NA, Abdulkhader SZ. Full pulpotomy with Biodentine in symptomatic young permanent teeth with carious exposure. J Endod 2018; 44(6): 932-937.

Dawood AE, Parashos P, Wong RHK, Reynolds EC, Manton DJ. Calcium silicate-based cements: composition, properties, and clinical applications. J Investig Clin Dent 2017; 8(2).

Wang Z. Bioceramic materials in endodontics. Endod Topics 2015; 32(1): 3-30.

Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 2008; 24(2): 149-164.

Tawil PZ, Duggan DJ, Galicia JC. MTA: a clinical review. Compend Contin Educ Dent 2015; 36(4): 247-264.

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36(3): 400-413.

Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006; 32(6): 569-572.

Chang SW. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor Dent Endod 2012; 37(4): 188-193.

Kaur M, Singh H, Dhillon JS, Batra M, Saini M. MTA versus Biodentine: review of literature with a comparative analysis. J Clin Diagn Res 2017; 11(8): 1-5.

Bachoo IK, Seymour D, Brunton P. A biocompatible and bioactive replacement for dentine: is this a reality? The properties and uses of a novel calcium-based cement. Br Dent J 2013; 214(2): 5.

Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM. Biodentine material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent 2014; 15(3): 147-158.

Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013; 29(2):20-28.

Kaup M, Schafer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med 2015; 11: 16.

Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995; 21(7): 349-353.

Kayahan, Nekoofar MH, Kazandag M, et al. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J 2009; 42(11): 1004-1014.

Kayahan, Nekoofar MH, McCann A, et al. Effect of acid etching procedures on the compressive strength of 4 calcium silicate–based endodontic cements. J Endod 2013; 39(12): 1646-1648.

Yesilyurt C, Yildirim T, Taşdemir T, Kusgoz A. Shear bond strength of conventional glass ionomer cements bound to mineral trioxide aggregate. J Endod 2009; 35(10): 1381-1383.

Ajami AA, Bahari M, Hassanpour-Kashani A, Abed-Kahnamoui M, Savadi-Oskoee A, Azadi-Oskoee F. Shear bond strengths of composite resin and giomer to mineral trioxide aggregate at different time intervals. J Clin Exp Dent 2017; 9(7): 906-911.

Tunç EŞ, Sönmez IşŞ, Bayrak Ş, Eğilmez T. The evaluation of bond strength of a composite and a compomer to white mineral trioxide aggregate with two different bonding systems. J Endod 2008; 34(5): 603-605.

Atabek D, Sillelioglu H, Olmez A. Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. J Endod 2012; 38(9): 1288-1292.

Tyagi N, Chaman C, Tyagi SP, Singh UP, Sharma A. The shear bond strength of MTA with three different types of adhesive systems: an in vitro study. J Conserv Dent 2016; 19(2): 130-133.

Sulwinska M, Szczesio A, Boltacz-Rzepkowska E. Bond strength of a resin composite to MTA at various time intervals and with different adhesive strategies. Dent Med Probl 2017; 54(2): 155-160.

Shin J-H, Jang J-H, Park SH, Kim E. Effect of mineral trioxide aggregate surface treatments on morphology and bond strength to composite resin. J Endod 2014; 40(8): 1210-1216.

Savadi Oskoee S, Bahari M, Kimyai S, Motahhari P, Eghbal MJ, Asgary S. Shear bond strength of calcium enriched mixture cement and mineral trioxide aggregate to composite resin with two different adhesive systems. J Dent (Tehran) 2014; 11(6): 665-671.

Ballal S, Venkateshbabu N, Nandini S, Kandaswamy D. An in vitro study to assess the setting and surface crazing of conventional glass ionomer cement when layered over partially set mineral trioxide aggregate. J Endod 2008; 34(4): 478-480.

Nandini S, Ballal S, Kandaswamy D. Influence of glass-ionomer cement on the interface and setting reaction of mineral trioxide aggregate when used as a furcal repair material using laser raman spectroscopic analysis. J Endod 2007; 33(2): 167-172.

Camilleri J. Scanning electron microscopic evaluation of the material interface of adjacent layers of dental materials. Dent Mater 2011; 27(9): 870-878.

Mente J, Geletneky B, Ohle M, Koch MJ, Friedrich Ding PG, Wolff D, et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 2010; 36(5): 806-813.

Dawood AE, Manton DJ, Parashos P, Wong RH. The effect of working time on the displacement of Biodentine beneath prefabricated stainless steel crown: a laboratory study. J Investig Clin Dent 2016; 7(4): 391-395.

Budig CG, Eleazer PD. In vitro comparison of the setting of dry ProRoot MTA by moisture absorbed through the root. J Endod 2008; 34(6): 712-714.

Pelliccioni GA, Vellani CP, Gatto MR, Gandolfi MG, Marchetti C, Prati C. ProRoot Mineral Trioxide Aggregate cement used as a retrograde filling without addition of water: an in vitro evaluation of its microleakage. J Endod 2007; 33(9): 1082-1085.

DeAngelis L, Chockalingam R, Hamidi-Ravari A, et al. In vitro assessment of mineral trioxide aggregate setting in the presence of interstitial fluid alone. J Endod 2013; 39(3): 402-405.

Cho SY, Seo DG, Lee SJ, Lee J, Lee SJ, Jung IY. Prognostic factors for clinical outcomes according to time after direct pulp capping. J Endod 2013; 39(3): 327-331.

Chailertvanitkul P, Paphangkorakit J, Sooksantisakoonchai N, et al. Randomized control trial comparing calcium hydroxide and mineral trioxide aggregate for partial pulpotomies in cariously exposed pulps of permanent molars. Int Endod J 2014; 47(9): 835-842.

Eid AA, Komabayashi T, Watanabe E, Shiraishi T, Watanabe I. Characterization of the mineral trioxide aggregate-resin modified glass ionomer cement interface in different setting conditions. J Endod 2012; 38(8): 1126-1129.

Kazemipoor M, Azizi N, Farahat F. Evaluation of microhardness of mineral trioxide aggregate after immediate placement of different coronal restorations: an in vitro study. J Dent (Tehran) 2018; 15(2): 116-122.

Dentsply Maillefer. “ProRoot® MTA (Mineral Trioxide Aggregate) Root canal repair material” [cited 2016 April 4]. Available from: HYPERLINK http://www.dentsplymaillefer.com/wp content/uploads/2016/10/Dentsply_Maillefer_PROROOT_MTA_0216_DFU_EN.pdf.

Neelakantan P, Grotra D, Subbarao CV, Garcia-Godoy F. The shear bond strength of resin-based composite to white mineral trioxide aggregate. J Am Dent Assoc 2012; 143(8): 40-45.

Aunianu M, Andrian S, Iovan G, Salceanu M, Topoliceanu C, Lacatusu S. A clinical and radiographic study on MTA efficiency in the direct pulp capping of deep dental caries. J Rom Med Dent 2010; 14(1): 40-43.

Marques MS, Wesselink PR, Shemesh H. Outcome of direct pulp capping with mineral trioxide aggregate: a prospective study. J Endod 2015; 41(7): 1026-1031.

Linu S, Lekshmi MS, Varunkumar VS, Sam Joseph VG. Treatment outcome following direct pulp capping using bioceramic materials in mature permanent teeth with carious exposure: a pilot retrospective study. J Endod 2017; 43(10): 1635-1639.

Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc 2008; 139(3): 305-315.

Kundzina R, Stangvaltaite L, Eriksen HM, Kerosuo E. Capping carious exposures in adults: a randomized controlled trial investigating mineral trioxide aggregate versus calcium hydroxide. Int Endod J 2017; 50(10): 924-932.

Caliskan MK, Guneri P. Prognostic factors in direct pulp capping with mineral trioxide aggregate or calcium hydroxide: 2- to 6-year follow-up. Clin Oral Investig 2017; 21(1): 357-367.

Farsi N, Alamoudi N, Balto K, Al Mushayt A. Clinical assessment of mineral trioxide aggregate (MTA) as direct pulp capping in young permanent teeth. J Clin Pediatr Dent 2006; 31(2): 72-76.

Taha NA, Khazali MA. Partial pulpotomy in mature permanent teeth with clinical signs indicative of irreversible pulpitis: a randomized clinical trial. J Endod 2017; 43(9): 1417-1421.

Özgür B, Uysal S, Güngör HC. Partial pulpotomy in immature permanent molars after carious exposures using different hemorrhage control and capping materials. Pediatr Dent 2017; 39(5): 364-370.

El-Meligy OA, Avery DR. Comparison of mineral trioxide aggregate and calcium hydroxide as pulpotomy agents in young permanent teeth (apexogenesis). Pediatr Dent 2006; 28(5): 399-404.

Linsuwanont P, Wimonsutthikul K, Pothimoke U, Santiwong B. Treatment outcomes of mineral trioxide aggregate pulpotomy in vital permanent teeth with carious pulp exposure: the retrospective study. J Endod 2016; 43(2): 225-230.

Alqaderi HE, Al-Mutawa SA, Qudeimat MA. MTA pulpotomy as an alternative to root canal treatment in children's permanent teeth in a dental public health setting. Endod 2014; 42(11): 1390-1395.

Taha NA, Ahmad MB, Ghanim A. Assessment of mineral trioxide aggregate pulpotomy in mature permanent teeth with carious exposures. Int Endod J 2017; 50(2): 117-125.

Miles JP, Gluskin AH, Chambers D, Peters OA. Pulp capping with mineral trioxide aggregate (MTA): a retrospective analysis of carious pulp exposures treated by undergraduate dental students. Oper dent 2010; 35(1): 20-28.

Mente J, Geletneky B, Ohle M, et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 2010; 36(5): 806-813.

Brizuela C, Ormeno A, Cabrera C, et al. Direct pulp capping with calcium hydroxide, Mineral Trioxide Aggregate, and Biodentine in permanent young teeth with caries: a randomized clinical trial. J Endod 2017; 43(11): 1776-1780.

Barrieshi-Nusair KM, Qudeimat MA. A prospective clinical study of mineral trioxide aggregate for partial pulpotomy in cariously exposed permanent teeth. J Endod 2006; 32(8): 731-735.

Qudeimat MA, Barrieshi-Nusair KM, Owais AI. Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. Eur Arch Paediatr Dent 2007; 8(2): 99-104.

Koubi G, Colon P, Franquin JC, et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth - a prospective study. Clin Oral Investig 2013; 17(1): 243-249.

Natale LC, Rodrigues MC, Xavier TA, Simoes A, de Souza DN, Braga RR. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J 2015; 48(1): 89-94.

Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite–calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater 2014; 30(3): 343-349.

Odabaş M, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to Biodentine. Sci World J 2013; 2013: 1-5.

Katge FA, Patil DP. Comparative analysis of 2 calcium silicate-based cements (Biodentine and mineral trioxide aggregate) as direct pulp-capping agent in young permanent molars: a split mouth study. J Endod 2017; 43(4): 507-513.

Lipski M, Nowicka A, Kot K, et al. Factors affecting the outcomes of direct pulp capping using Biodentine. Clin Oral Investig 2018; 22(5): 2021-2029.

Owittayakul D, Chuveera P. Biodentine partial pulpotomy in adult permanent teeth with cariously-exposed pulp: case reports (up to 30 months follow-up). J Dent Assoc Thai 2016; 66(3): 171-181.

Chinadet W, Sutharaphan T, Chompu-Inwai P. Biodentine™ partial pulpotomy of a young permanent molar with signs and symptoms indicative of irreversible pulpitis and periapical lesion: a case report of a five-year follow-up. Case Rep Dent 2019; 2019: 1-5.

Abuelniel GM, Duggal MS, Duggal S, Kabel NR. Evaluation of mineral trioxide aggregate and Biodentine as pulpotomy agents in immature first permanent molars with carious pulp exposure: a randomised clinical trial. Eur J Paediatr Dent 2021; 22(1): 19-25.

Taha NA, Abdelkhader SZ. Outcome of full pulpotomy using Biodentine in adult patients with symptoms indicative of irreversible pulpitis. Int Endod J 2018; 51(8): 819-828.

Palma PJ, Marques JA, Falacho RI, Vinagre A, Santos JM, Ramos JC. Does delayed restoration improve shear bond strength of different restorative protocols to calcium silicate-based cements? Materials (Basel) 2018; 11(11): 1-10.

Palma PJ, Marques JA, Antunes M, et al. Effect of restorative timing on shear bond strength of composite resin/calcium silicate-based cements adhesive interfaces. Clin Oral Investig 2021; 25(5): 3131-3139.

Cengiz E, Ulusoy N. Microshear bond strength of tri-calcium silicate-based cements to different restorative materials. J Adhes Dent 2016; 18(3): 231-237.

Meraji N, Camilleri J. Bonding over dentin replacement materials. J Endod 2017; 43(8): 1343-1349.

Colak H, Tokay U, Uzgur R, Uzgur Z, Ercan E, Hamidi MM. The effect of different adhesives and setting times on bond strength between Biodentine and composite. J Appl Biomater Funct Mater 2016; 14(2): 217-222.

Nekoofar MH, Motevasselian F, Mirzaei M, Yassini E, Pouyanfar H, Dummer PM. The micro-shear bond strength of various resinous restorative materials to aged Biodentine. Iran Endod J 2018; 13(3): 356-361.

Keles S, Simsek Derelioglu S. Shear bond strength of composite and compomer to Biodentine® applied with various bonding agents: an in-vitro study. Atatürk Univ Diş Hekim Fak Derg 2019: 29(1); 49-54.

Deepa VL, Dhamaraju B, Bollu IP, Balaji TS. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: an in vitro study. J Conserv Dent 2016; 19(2): 166-170.

Schmidt A, Schafer E, Dammaschke T. Shear bond strength of lining materials to calcium-silicate cements at different time intervals. J Adhes Dent 2017; 19(2): 129-135.

Davidson CL, de Gee AJ, Feilzer A. The competition between the composite-dentin bond strength and the polymerization contraction stress. J Dent Res 1984; 63(12): 1396-1399.

Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 2018; 51(3): 284