Effects of Pre-drilled Pilot-hole Diameters on Miniscrew Implant Primary Stability: An In vitro study
Main Article Content
Abstract
Objective: To evaluate the effects of pre-drilled pilot-hole diameters on the primary stability of palatal miniscrew implants in synthetic composite palatal bone substitute using maximal insertion torque and pull-out strength measurements.
Materials and Methods: Sixty titanium alloy miniscrew implants, with a length of 6.0 mm and a diameter of 1.8 mm, were divided into six groups, 10 each, of different-sized pre-drilled pilot-hole (1.1-mm, 1.2-mm, 1.3-mm, 1.4-mm and 1.5-mm diameters, and no pilot-hole as a negative control group). The different sizes of pre-drilled pilot holes were created in synthetic composite palatal bone blocks (bone density of 0.32 g/cc for cancellous bone, and 0.64 g/cc for cortical bone). The maximal insertion torque was recorded as the implant threads were engaged into the bone block at a depth of 5.0 mm. The vertical pull-out strength was measured at a 10 mm/min rate of removal until the implant was separated from the block.
Results: Mean maximal insertion torque showed significant differences (p<0.001) among the six groups. The control group showed the greatest maximal insertion torque (11.58 Ncm). This torque decreased with increased pilot-hole diameter. The 1.5-mm pilot-hole exhibited the least maximal insertion torque (4.08 Ncm). There were no significant differences in pull-out strength between the no-pilot-hole and 1.1-mm and 1.2-mm pre-drilled pilot-hole diameters (61.1% and 67.7% of the implant outer diameter, respectively) (p>0.05). However, the significant differences were found between 1.3-mm, 1.4-mm, and 1.5-mm pilot-hole diameters, (72.2%, 77.8%, and 83.3% the implant outer diameter, respectively) (p>0.001).
Conclusions: The maximal insertion torque and the pull-out strength decrease when pre-drilled pilot-hole diameter increases. The 1.1-mm- and 1.2-mm-diameter pre-drilled pilot-hole provide optimal primary stability and are suggested for 1.8 mm x 6 mm titanium alloy implant placement in synthetic palatal bone.
Article Details
References
Papadopoulos MA, Tarawneh F. The use of mini-screw implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod2007; 103(5): e6-e15.
Cope JB. Temporary anchorage devices in ortho-dontics: a paradigm shift. Semin Orthod 2005; 11(1): 3-9.
Yao C-CJ, Lai EH-H, Chang JZ-C, Chen I, Chen YJ. Comparison of treatment outcomes between skeletal anchorage and extraoral anchorage in adults with maxillary dentoalveolar protrusion. Am J Orthod Dentofacial Orthop 2008; 134(5): 615-624.
Sandler J, Benson PE, Doyle P, et al. Palatal implants are a good alternative to headgear: a randomized trial. Am J Orthod Dentofacial Orthop 2008; 133(1): 51-57.
Melsen B, Costa A. Immediate loading of im-plants used for orthodontic anchorage. Orthod Craniofac Res 2000; 3(1): 23-28.
Asscherickx K, Vannet BV, Bottenberg P, Wehr-bein H, Sabzevar MM. Clinical observations and success rates of palatal implants. Am J Orthod Dentofacial Orthop 2010; 137(1): 114-122.
Huja SS, Litsky AS, Beck FM, Johnson KA, Lars-en PE. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. Am J Orthod Dentofacial Orthop 2005; 127(3): 307-313.
Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006; 17(1): 109-114.
Suzuki M, Deguchi T, Watanabe H, et al. Evalua-tion of optimal length and insertion torque for miniscrews. Am J Orthod Dentofacial Orthop 2013; 144(2): 251-259.
Heidemann W, Gerlach KL, Gröbel KH, Köllner HG. Influence of different pilot hole sizes on torque measurements and pullout analysis of osteosynthesis screws. J Craniomaxillofac Surg 1998; 26(1): 50-55.
Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop2006; 67(3): 162-174.
Gantous A, Phillips JH. The effects of varying pilot hole size on the holding power of miniscrews and microscrews. Plast Reconstr Surg 1995; 95(7): 1165-1169.
Thompson MS, McCarthy ID, Lidgren L, Ryd L. Compressive and shear properties of commer-cially available polyurethane foams. J Biomech Eng 2003; 125(5): 732-734.
Wu JH, Wang HC, Chen CM , et al. Pullout strengths of orthodontic palatal mini-implants tested in vitro. J Dent Sci 2011; 6(4): 200-204.
Kakali L, Alharbi M, Pandis N, Gkantidis N, Kloukos D. Success of palatal implants or mini-screws placed median or paramedian for the reinforcement of anchorage during orthodontic treatment: a systematic review. Eur J Orthod 2019; 41(1): 9-20.
Rodriguez JC, Suarez F, Chan HL, Molina MP, Wang HL. Implants for orthodontic anchorage: success rates and reasons of failures. Implant Dent 2014(2); 23: 155-161.
Suzuki EY, Suzuki B. Placement and removal torque values of orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop 2011; 139(5): 669-678.
Karagkiolidou A, Ludwig B, Pazera P, Gkantidis N, Pandis N, Katsaros C. Survival of palatal miniscrews used for orthodontic appliance anchorage: a retrospective cohort study. Am J Orthod Dentofacial Orthop 2013; 143(6): 767-772.
Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors asso-ciated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003; 124(4): 373-378.
Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 2007; 22(5): 779-784.
Winsauer H, Vlachojannis C, Bumann A, Vlachojannis J, Chrubasik S. Paramedian vertical palatal bone height for mini-implant insertion: a systematic review. Eur J Orthod 2014; 36(5): 541-549.
Suteerapongpun P, Jotikasthira D, Janhom A, Wattanachai T. Palatal cortical bone thickness in thai patients with open vertical skeletal configu-ration, using cone-beam computed tomography. CM Dent J 2018; 39(1): 85-93.
Hung E, Oliver D, Kim KB, Kyung HM, Bus-chang PH. Effects of pilot hole size and bone density on miniscrew implants' stability. Clin Implant Dent Relat Res 2012; 14(3): 454-460.
guyen MV, Codrington J, Fletcher L, Dreyer CW, Sampson WJ. The influence of miniscrew insertion torque. Eur J Orthod 2018; 40(1): 37-44.
Leonardo BD, Ludwig B, Lisson JA, Contardo L, Mura R, Hourfar J. Insertion torque values and success rates for paramedian insertion of orthodontic mini-implants. J Orofac Orthop2018; 79(2): 109-115.
Defino HL, Wichr CRG, Shimano AC, Kandziora F. The influence of pilot hole diameter on screw pullout resistance. Acta Ortop Bras 2007; 15(2): 76-79.
Uemura M, Motoyoshi M, Yano S, Sakaguchi M, Igarashi Y, Shimizu N. Orthodontic mini-implant stability and the ratio of pilot hole implant diameter. Eur J Orthod 2012; 34(1): 52-56.
Baumgaertel S. Predrilling of the implant site: Is it necessary for orthodontic mini-implants? . Am J Orthod Dentofacial Orthop 2010; 137(6): 825-829.
Buschang PH, Kim KB. Considerations for optimizing the use of miniscrew implants in orthodontic practice. In: Kim KB, ed: Tempo-rary Skeletal Anchorage Devices, 1st ed, Berlin: Springer; 2014: 1-27.
Migliorati M, Signori A, Biavati AS. Tempo-rary anchorage device stability: an evaluation of thread shape factor. Eur J Orthod 2012; 34(5): 582-586.
Gracco A, Giagnorio C, Incerti Parenti S, Ales-sandri Bonetti G, Siciliani G. Effects of thread shape on the pullout strength of miniscrews. Am J Orthod Dentofacial Orthop 2012; 142(2): 186-190.
Kim YK, Kim YJ, Yun PY, Kim JW. Effects of the taper shape, dual-thread, and length on the mechanical properties of mini-implants. Angle Orthod 2009; 79(5): 908-914.
Steigenga J, Al-Shammari K, Misch C, Nociti Jr FH, Wang HL. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol 2004; 75(9): 1233-1241.
Eraslan O, İnan Ö. The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis. Clin Oral Investig 2010; 14(4): 411-416.
Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983; 17(4): 266-269.
Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano Yamamoto T. Clinical use of mini-screw implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 2007; 131(1): 9-15.
Kuroda S, Tanaka E. Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn Dent Sci Rev 2014; 50(4): 79-85.
Whang C, Bister D, Sherriff M. An in vitro investigation of peak insertion torque values of six commercially available mini-implants. Eur J Orthod 2011; 33(6): 660-666.
Wilmes B, Ludwig B, Vasudavan S, Nienkemper M, Drescher D. The T-zone: median vs. Parame-dian insertion of palatal mini-implants. J Clin Orthod 2016; 50(9): 543-551.