Palatal Cortical Bone Thickness in Thai Patients with Open Vertical Skeletal Configuration, Using Cone-beam Computed Tomography

Main Article Content

Piyoros Suteerapongpun
Dhirawat Jotikasthira
Apirum Janhom
Tanapan Wattanachai

Abstract

Objective: To assess the palatal cortical bone thickness in Thai patients exhibiting anterior open bite and open vertical skeletal configuration, using cone-beam computed tomography (CBCT).


Materials and Methods: Fifteen CBCT images of Thai orthodontic patients (aged from 15 to 30 years) exhibiting Class I malocclusion with anterior open bite and open vertical skeletal configuration were recruited. The palatal cortical bone thickness was measured at 3.0-mm anteroposterior intervals from the middle of the distal bony margin of the incisive foramen, and at 3.0-mm mediolateral intervals from the midsagittal plane on both right and left sides.


Results: The palatal cortical bone thickness ranged from 1.27±0.40 to 2.90±0.63 mm. The cortical bone thickness measurements at all sites were equal to or greater than 1.0 mm.


Conclusions: CBCT-based investigation showed variations in palatal cortical bone thickness, and suggested the palatal cortical bone thickness at all sites of patients exhibiting anterior open bite and open vertical skeletal configuration is sufficient for primary stability in miniscrew implant placement.

Article Details

How to Cite
Suteerapongpun, P. ., Jotikasthira, D. ., Janhom, A., & Wattanachai, T. . (2018). Palatal Cortical Bone Thickness in Thai Patients with Open Vertical Skeletal Configuration, Using Cone-beam Computed Tomography. Chiang Mai Dental Journal, 39(1), 85–93. Retrieved from https://he01.tci-thaijo.org/index.php/cmdj/article/view/197545
Section
Original article

References

Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 1998; 13: 201-209.

Kang YG, Kim JY, Nam JH. Control of maxillary dentition with 2 midpalatal orthodontic miniscrews. Am J Orthod Dentofacial Orthop 2011; 140(6): 879-885.

Kim YH, Yang SM, Kim S, Lee JY, Kim KE, Gianelly AA, et al. Midpalatal miniscrews for orthodontic anchorage: factors affecting clinical success. Am J Orthod Dentofacial Orthop 2010; 137(1): 66-72.

Nakahara K, Matsunaga S, Abe S, Tamatsu Y, Kageyama I, Hashimoto M, et al. Evaluation of the palatal bone for placement of orthodontic mini-implants in Japanese adults. Cranio 2012; 30(1): 72-79.

Kyung SH, Hong SG, Park YC. Distalization of maxillary molars with a midpalatal miniscrew. J Clin Orthod 2003; 37: 22-26.

Lee JS, Kim DH, Park YC, Kyung SH, Kim TK. The efficient use of midpalatal miniscrew implants. Angle Orthod 2004; 74: 711-714.

Park HS. A miniscrew-assisted transpalatal arch for use in lingual orthodontics. J Clin Orthod 2006; 40: 12-16.

Flieger S, Ziebura T, Kleinheinz J, Wiechmann D. A simplified approach to true molar intrusion. Head Face Med 2012; 8: 30.

Wilmes B, Nienkemper M, Ludwig B, Nanda R, Drescher D. Upper-molar intrusion using anterior palatal anchorage and the mousetrap appliance. J Clin Orthod 2013; 47(5): 314-320.

Xun C, Zeng X, Wang X. Microscrew ancharage in skeletal anterior open-bite treatment. Angle Orthod 2007; 77: 47-55.

Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 2006; 67: 162-174.

Ciarella M, Goldstein S, Kuhn J, Cody D, Brown M. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 1991; 9: 674-682.

Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 2007; 22: 779-784.

Cattaneo PM, Dalstra M, Melsen B. Analysis of stress and strain around orthodontically loaded implants: an animal study. Int J Oral Maxillofac Implants 2007; 22: 213-225.

Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005; 84: 428-433.

Lin L, Huang G, Chen C. Etiology and treatment modalities of anterior open bite malocclusion. J Exp Clin Med 2013; 5: 1-4.

Moon CH, Park HK, Nam JS, Im JS, Baek SH. Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am J Orthod Dentofacial Orthop 2010; 138: 51-57.

Ozdemir F, Tozlu M, Germec-Cakan D. Quantitative evaluation of alveolar cortical bone density in adults with different vertical facial types using cone-beam computed tomography. Korean J Orthod 2014; 44: 36-43.

Ozdemir F, Tozlu M, Germec-Cakan D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am J Orthod Dentofacial Orthop 2013; 143(2): 190-196.

Horner KA, Behrents RG, Kim KB, Buschang PH. Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults. Am J Orthod Dentofacial Orthop 2012; 142: 170-178.

Bernhart T, Vollgruber A, Gahleitner A, Dortbudak O, Haas R. Alternative to the median region of the palate for placement of an orthodontic implant. Clin Oral Implants Res 2000; 11: 595-601.

Kang S, Lee SJ, Ahn SJ, Heo MS, Kim TW. Bone thickness of the palate for orthodontic mini-implant anchorage in adults. Am J Orthod Dentofacial Orthop 2007; 131(4 Suppl): S74-81.

Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog Orthod 2006; 7: 164-174.

Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am J Orthod Dentofacial Orthop 2008; 134: 361-369.

Gahleitner A, Podesser B, Schick S, Watzek G, Imhof H. Dental CT and orthodontic implants: imaging technique and assessment of available bone volume in the hard palate. Eur J Radiol 2004; 51: 257-262.

Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003; 124: 373-378.

Park H-S, Jeong S-H, Kwon O-W. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006; 130: 18-25.

Baumgaertel S. Quantitative investigation of palatal bone depth and cortical bone thickness for mini-implant placement in adults. Am J Orthod Dentofacial Orthop 2009; 136: 104-108.

Proffit WR, Fields HW, Nixon W. Occlusal forces in normal-and long-face adults. J Dent Res 1983; 62: 566-570.

García‐Morales P, Buschang PH, Throckmorton GS, English JD. Maximum bite force, muscle efficiency and mechanical advantage in children with vertical growth patterns. Eur J Orthod 2003; 25: 265-272.

Frost H. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of the mechanical and non-mechanical agents. Bone Miner 1987; 2: 73-85.

Frost H. Wolff's law and bone's structural adaptations to mechaical usage: an overview for clinicians. Angle Orthod 1994; 64: 175-188.

Kim HJ, Yun HS, Park HD, Kim DH, Park YC. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod 2006; 130: 177-182.

Cousley R. Critical aspects in the use of orthodontic palatal implants. Am J Orthod Dentofacial Orthop 2005; 127: 723-729.

Ludwig B, Glasl B, Bowman SJ, Wilmes B, Kinzinger GS, Lisson JA. Anatomical guidelines for miniscrew insertion: palatal sites. J Clin Orthod 2011; 45(8): 433-441.

Wehrbein H. Bone quality in the midpalate for temporary anchorage devices. Clin Oral Implants Res 2009; 20: 45-49.