ความต้านทานแรงดัดของวัสดุบูรณะไบโอแอคทีฟ หลังผ่านการจำลองการใช้งานโดยการเปลี่ยนแปลงอุณหภูมิ
Main Article Content
บทคัดย่อ
วัตถุประสงค์ : การศึกษานี้มีวัตถุประสงค์เพื่อเปรียบเทียบค่าความต้านแรงดัด (FS) ของวัสดุบูรณะไบโอแอคทีฟ เซ็นชัน เอ็น (CN) และแอคติวา (AB) กับยูนิเวอร์แซลเรซินคอมโพสิตฟิลเทคแซด 350 เอ็กซ์ที (FZ) เมื่อผ่านการจำลองการใช้งานโดยการเปลี่ยนแปลงอุณหภูมิ (TC) ที่ 0 10,000 และ 20,000 รอบ
วัสดุอุปกรณ์และวิธีการ : เตรียมชิ้นตัวอย่างของวัสดุแต่ละชนิดขนาด 2(±0.1)x2(±0.1)x25(±2) มิลลิเมตร ในแม่แบบอะคริลิค กลุ่มละ 30 ชิ้น นำไปแช่น้ำกลั่น อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง แบ่งชิ้นตัวอย่างของวัสดุแต่ละชนิดเป็น 3 กลุ่มย่อยตามรอบ TC ที่ 0 10,000 และ 20,000 รอบ (กลุ่มละ 10 ชิ้น) แช่ชิ้นตัวอย่างในเครื่องจำลองการเปลี่ยนแปลงอุณหภูมิร้อนเย็นแบบเป็นจังหวะ อุณหภูมิ 5 และ 55 องศาเซลเซียส ระยะเวลาแช่ค้าง 30 วินาที ตามที่กำหนดในแต่ละกลุ่ม นำชิ้นตัวอย่างทุกชิ้นมาทดสอบความต้านทานแรงดัดแบบ 3 จุด ด้วยความเร็วหัวกด 1 มิลลิเมตร/นาที วิเคราะห์ค่าเฉลี่ย FS ด้วยสถิติความแปรปรวนสองทาง และเปรียบเทียบระหว่างคู่โดยบอนเฟอโรนีที่ความเชื่อมั่นร้อยละ 95
ผล : ผลการศึกษาพบว่า ชนิดของวัสดุและจำนวนรอบของ TC มีผลต่อค่า FS อย่างมีนัยสำคัญทางสถิติ (p=0.037) โดยเมื่อไม่ผ่าน TC พบว่า CN AB และ FZ มีค่าเฉลี่ย FS ไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p>0.05) เมื่อผ่าน TC 20,000 รอบ CN มีค่าเฉลี่ย FS สูงกว่า AB และ FZ อย่างมีนัยสำคัญทางสถิติ (p<0.05) ค่าเฉลี่ย FS ของ AB และ FZ ไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติในทุกรอบของ TC (p>0.05) และพบว่าค่าเฉลี่ย FS ของวัสดุบูรณะทั้ง 3 ชนิดที่ไม่ผ่าน TC มีค่าสูงกว่าวัสดุบูรณะที่ผ่าน TC ที่ 10,000 และ 20,000 รอบอย่างมีนัยสำคัญทางสถิติ (p<0.05) ในขณะที่ 10,000 และ 20,000 รอบมีค่าไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p>0.05)
บทสรุป : จากการศึกษานี้พบว่า เมื่อนำวัสดุทั้ง 3 ชนิดผ่าน TC 10,000 และ 20,000 รอบ มีค่าเฉลี่ย FS ลดลงอย่างมีนัยสำคัญทางสถิติ (p<0.05) และวัสดุไบโอแอคทีฟอัลคาไซต์มีค่าเฉลี่ย FS สูงกว่าไบโอแอคทีฟเรซินและยูนิเวอร์แซลเรซินคอมโพสิตอย่างมีนัยสำคัญทางสถิติเมื่อผ่าน TC ที่ 20,000 รอบ
Article Details

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ทีได้รับการลงตีพิมพ์ในวิทยาสารทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่นถือเป็นลิขสิทธิ์เฉพาะของคณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษร จากคณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่นก่อนเท่านั้น
เอกสารอ้างอิง
Ferracane JL. Resin-based composite performance: Are there some things we can’t predict? Dent Mater 2013;29(1):51–8.
Hickel R, Manhart J. Longivity of restoration in posterior teeth. J Adhes Dent 2001;3(1): 45-64.
Dai LL, Mei ML, Chu CH, Lo ECM. Mechanisms of bioactive glass on caries management: A review. Materials (Basel). 2019;12(24):1–14.
Ladino LG, Bernal A, Calderón D, Cortés D. Bioactive Materials in Restorative Dentistry: A Literature Review. SVOA Dent 2021;74–81.
Chen L, Shen H, Suh BI. Bioactive dental restorative materials: A review. Am J Dent 2013; 26(4): 219-27.
Justen M, Scheck D, Münchow EA, Jardin JJ. Is Cention-N comparable to orther direct dental restorative materials? A systematic review with network meta-analysis of in vitro studies. Dent Mater 2024. Available Form: https://doi.org/10.1016/j.dental.2024.06.014
Francois P, Fouquet V, Attal JP, Dursun E. Commercially Available Fluoride-Releasing Restorative Materials: A Review and a Proposal for Classification. Materials (Basel) 2020; 13(10): 2313. doi: 10.3390/ma13102313.
Todd JC. Scientific Documentation: Cention N. Ivoclar-Vivadent Press: Schaan, Liechstein 2016: 1-58.
Ille N. Comparative Effect of Self- or Dual-Curing on Polymerization Kinetics and Mechanical Properties in a Novel, Dental-Resin-Based Composite with Alkaline Filler. Running Title: Resin-Composites with Alkaline Fillers. Materials (Basel) 2018; 11(1): 108. Available form: http://dx.doi.org/10.3390/ma11010108
Products - ACTIVATM Overview - Product Review [Internet]. [cited 2021 Sep 12]. Available from: https://www.pulpdent.com/activa-bioactive-overview/
Kaushik M, Yadav M. Marginal Microleakage Properties of Activa Bioactive Restorative and Nanohybrid Composite Resin Using Two Different Adhesives in Non Carious Cervical Lesions-an in Vitro Study Les Proprietaires De Fuite Marginales De Restauration Activa Bioactive Et Resin. J West African Coll Surg 2017; 7(2): 1–14.
Heintze SD, Ilie N, Hickel R, Reis A, Loguercio A, Rousson V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials—A systematic review. Dent Mater 2017; 33(3): e101–14. Available from: http://dx.doi.org/10.1016/j.dental.2016.11.013.
Sumino N, Tsubota K, Takamizawa T, Shiratsuchi K, Miyazaki M, Latta MA. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol Scand 2013; 71(3–4): 820–7.
Hahnel S, Henrich A, Bürgers R, Handel G, Rosentritt M. Investigation of mechanical properties of modern dental composites after artificial aging for one year. Oper Dent 2010; 35(4): 412–9.
Okamura H, Miyasaka T, Hagiwara T. Development of dental composite resin utilizing low-shrinking and low-viscous monomers. Dent Mater J 2006; 25(3): 437–44.
Chole D, Shah HK , Kundoor S, Bakle S, Gandhi N, Hatte N. In vitro comparision of flexural strength of Cention-N, Bulk-Fill composites, Light-Cure Nanocomposites and Resin-Modified Glass Ionomer Cement. J Dent Med Sci 2018; 17(10): 79–82.
Yesil ZD, Alapati S, Johnston W, Seghi RR. Evaluation of the wear resistance of new nanocomposite resin restorative materials. J Prosthet Dent 2008; 99(6): 435–43.
Sadananda V, Bhat G, Hegde MN. Comparative evaluation of flexural and compressive strengths of buk-fill composites. International J Advanced Scientific and Technical Research 2017; 7(1) Available form: http://www.rspublication.com/ijst/index.html.
Ilie N, Hilton TJ, Heintze SD, Hickel R, Watts DC, Silikas N, et al. Academy of Dental Materials guidance—Resin composites: Part I—Mechanical properties. Dent Mater 2017;33(8):880–94.
International Organization for Standarization. ISO 4049:2009 Dentistry Polymer based restorative materials. 2009;2000.
Morresi AL, Amario MD, Monaco A, Rengo C, Grassi FR, Capogreco M. Effects of critical thermal cycling on the flexural strength of resin composites. J Oral Sci 2015; 57(2): 137–43.
Morresi AL, D’Amario M, Capogreco M, Gatto R, Marzo G, D’Arcangelo C, et al. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater [Internet]. 2014;29:295–308. Available from: http://dx.doi.org/10.1016/j.jmbbm.2013.09.013.
Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999; 27(2): 89–99.
Lima VP, Machado JB, Zhang Y, Loomans BAC, Moraes RR. Laboratory methods to simulate the mechanical degradation of resin composite restorations. Dent Mater 2022; 38(1): 214-29.
Alrahlah. A Diametral Tensile Strength, Flexural Strength, and Surface Microhardness of Bioactive Bulk Fill Restorative.J Contemp Dent Pract 2018; 19(1): 13-19.
Kiomarsi N, Saburian P, Chiniforush N, Karazifard MJ, Hashemikamangar SS. Effect of thermocycling and surface treatment on repair bond strength of composite. J Clin Exp Dent 2017; 9(8): e945–51.
Pala K, Tekçe N, Tuncer S, Demirci M, Öznurhan F, Serim M. Flexural strength and microhardness of anterior composites after accelerated aging. J Clin Exp Dent 2017; 9(3): e424–30.
Mann JS, Sharma S, Maurya S, Suman A. Cention N: A Review. Inter J Curr Res 2018; 10(05): 69111–2.
Singh H, Rashmi S, Pai S, Kini S. Comparative evaluation of fluoride release from two different glass ionomer cement and a novel alkasite restorative material – an in vitro study. Pesqui Bras Odontopediatria Clín Integr. 2020; 20:e5209. Available from:https://doi.org/10.1590/pboci.2020.019.
Walker MP, Haj-Ali R, Wang Y, Hunziker D and Williams KB. Influence of environmental conditions on dental composite flexural properties. Dental Materials. 2006; 22(11):1002–1007.
International Standards Organization, 1994. Guidance on Testing of Adhesion to Tooth Structure. ISO/TR 11405 Dental Materials, 1–14.
Yap A, Choo HS, Choo HY, Yahya NA. Flexural Properties of Bioactive Restoratives in Cariogenic Environments. Oper Dent (2021) 46 (4): 448–56.
Randolph LD, Palin WM, Leloup G. Filler characteristics of modern dental resin composites and their influence on physioco-mechanical properties. Dent Mater 2016; 32(12): 1586-99.
Goncalves F, Kawano Y, Pfeifer C, Stansbury JW, Braga RR. Influence of BisGMA, TEGDMA, and BisEMA contents on viscoscity, conversion, and flexural strength of experimental resins and composites. European J Oral Sci 2009; 117(4): 442-6.
Aljabo A, Xia W, Liagat S, Khan MA, Knowles JC, Ashley P, Young AM. Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dent Mater 2015; 31(11): 1279-89.
Kim KH, Ong JL, Okuma O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 2002; 87(6): 642-9.
Raman V, Srinivasan D, AR SE, et al. A Comparative Evaluation of Dissolution Rate of Three Different Posterior Restorative Materials Used in Pediatric Dentistry: An In Vitro Study. Int J Clin Pediatr Dent 2023; 16(S-1): S20–S26.
Fabíola K, De Oliveira A, Luiz A, Dutra T, Beatriz A, Pinto S, et al. Alkasite: a New Alternative To Amalgam?-Clinical Case Report. Int J Dev Res 2021; 11(03): 45552–5. Available from:https://es.scribd.com/document/565697322/21433-2%0Ahttps://doi.org/10.37118/ijdr.21433.03.2021.
Nayak M. Sorption and Solubility of Alkasite Restorative Material - An In Vitro Study. IOSR J of Dental and Medical Sciences 2019; 18(5): 69-73.
Prasada K, Vidhyadhara HT. Comparative evaluation of sorption and solubility of Amalgomer CR and Cention N restorative material- An in vitro study. J Med Res 2021; 5(3): 122–5.
ACTIVATM BioACTIVE – RESTORATIVETM. Available from: https://www.pulpdent.com/products/activa-bioactive-restorative/
Ghavami-Lahiji M, Firouzmanesh M, Bagheri H, Jafarzadeh Kashi TS, Razazpour F, Behroozibakhsh M. The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor Dent Endod 2018; 43(2): 1–12.
Souza ROA, Özcan M, Michida SMA, De Melo RM, Pavanelli CA, Bottino MA, et al. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. J Prosthodont 2010;19(3):218–25.
Janda R, Roulet JF, Latta M. The effects of thermocycling on the flexural strength and flexural modulus of modern resin-based filling materials. Dent Mater 2006; 22: 1103–8.
Bandéca MC, El-Mowafy O, Saade EG, Rastelli ANS, Bagnato VS, Porto-Neto ST. Changes on degree of conversion of dual-cure luting light-cured with blue LED. Laser Phys 2009; 19(5): 1050–5.