Accuracy of Linear Measurements with Different Cone Beam Computed Tomography
Main Article Content
Abstract
Objective: Dental radiography, both 2D and 3D, plays a significant role for dental examinations. Recently, 3D images (Cone-Beam Computed Tomography; CBCT) have been widespread used in dentistry. Various machines with different productions and vendors may affect the qualities and outcome of CBCT images. To study the qualities of CBCT images from different machines by using the accuracy of linear measurement method is set up for this study’s objective.
Materials and Methods: This is an in-vitro experimental study comparing the accuracy of linear measurements from two CBCT scanning machines. The 64 printing models made of polylactic acid (PLA) material were built up with actual width, length, and height as the control group. The models were scanned by two CBCT machines with same parameters and stored in medical PACS; Infinitt®. The width (A) and length (B) were measured from an axial plane and the height (H) was measured from a sagittal plane.
Results: Statistical analysis with the repeated ANOVA showed the mean differences between the actual model and CBCT images from Planmeca Viso G7® and Carestream 8100SC 3D® were 0.04 ±0.08 mm (p<0.001) and -0.15 ±0.40 mm. (p<0.001) respectively. The linear lengths measured on the two CBCT machines were significantly different.
Conclusion: The linear lengths measured on CBCT images of the Planmeca Viso G7® showed less difference from the model than those of the Carestream 8100 SC 3D.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการลงตีพิมพ์ในวิทยาสารทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่นถือเป็นลิขสิทธิ์เฉพาะของคณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่น หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษร จากคณะทันตแพทยศาสตร์ มหาวิทยาลัยขอนแก่นก่อนเท่านั้น
References
Boontawee P, Panyarak W, Srisuwan T. Advanced medical imaging technique in endodontics: a literature review. J Thai Endo Assoc. 2022;1(1):17–32.
Srimawong P. Cone beam computed tomography in Dentistry. J Dent Assoc Thai. 2008;58(1):26–38.
Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44(1):20140224.
Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC. Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol. 2008;37(2):80-93.
Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, et al. Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol. 2008;37(6):309-19.
Razavi SH, Poormohammadi M, Ansarilari A. Temporal bone image quality in CBCT: Device and protocol variations. Cochlear Implants Int. 2025:1-6
Adarsh K, Sharma P, Juneja A. Accuracy and reliability of tooth length measurements on conventional and CBCT images: An in vitro comparative study. J Orthod Sci. 2018;7(3):1-7.
Zentai G. Comparison of CMOS and a-Si flat panel imagers for X-ray imaging. Proceedings of the 2011 IEEE International Conference on Imaging Systems and Techniques, IST 2011
Spin-Neto R, Gotfredsen E, Wenzel A. Variation in voxel value distribution and effect of time between exposures in six CBCT units. Dentomaxillofac Radiol. 2014;43(4):20130376.
Dach E, Bergauer B, Seidel A, Von Wilmowsky C, Adler W, Lell M, et al. Impact of voxel size and scan time on the accuracy of three-dimensional radiological imaging data from cone-beam computed tomography. J Craniomaxillofac Surg. 2018;46(12):2190-6.
da Silva Moura W, Chiqueto K, Pithon GM, Neves LS, Castro R, Henriques JF. Factors influencing the effective dose associated with CBCT: a systematic review. Clin Oral Investig. 2019;23(1):1319-30.
Allen CM. Digital Radiographic Exposure: Principles & Practice. In: Digital Radiographic Exposure: Principles & Practice. Columbia: University of Missouri; 2022.
Tofanghchiha M, Porsamimi J, Kafilzadeh S, Mobini M. The accuracy of cone-beam computerized tomography linear measurements in human dry mandible. J Kerman Univ Med Sci. 2014;20(1):61-8.
Bohner LO, Tortamano P, Marotti J. Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters. Dentomaxillofac Radiol. 2017;46(5):20160377.
Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(4):534-42.
Rokn AR, Hashemi K, Akbari S, Kharazifard MJ, Barikani H, Panjnoosh M. Accuracy of linear measurements using cone beam computed tomography in comparison with clinical measurements. J Dent (Tehran). 2016;13(5):333.
Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33(5): 291-4.
Mortazavi S, Soheyli M, Afshari S, Ghasemi MS, Safaee A. Evaluating the accuracy of linear measurements in CBCT: The role of slice thickness. Inter J Med Investig. 2024;12(1):21-32.
Moshfeghi M, Tavakoli MA, Hosseini ET, Hosseini AT, Hosseini IT. Analysis of linear measurement accuracy obtained by cone beam computed tomography (CBCT-NewTom VG). Dent Res J. 2012;9(1):57-62.
Nikneshan S, Aval SH, Bakhshalian N, Shahab S, Mohammadpour M, Sarikhani S. Accuracy of linear measurement using cone-beam computed tomography at different reconstruction angles. Imaging Sci Dent. 2014;44(4):257-62.
Tomasi C, Bressan E, Corazza B, Mazzoleni S, Stellini E, Lith A. Reliability and reproducibility of linear mandible measurements with the use of a cone-beam computed tomography and two object inclinations. Dentomaxillofac Radiol. 2011;40(4):244-50.