ตัวรับเอริลไฮโดรคาร์บอนและคอนสติตูทีฟแอนโดรสเตนเป็นปัจจัยกำหนดการเหนี่ยวนำการแสดงออกของไซโตโครมพี 450 1 เอ 2, 2 เอ 6 และ 2 เอ 13 โดยนิโคติน และเอ็นไนโตรโซไดเอธาโนลามีนในเซลล์มะเร็งตับ

Main Article Content

Nawaratt
วรัญญา จตุพรประเสริฐ
กนกวรรณ จารุกำจร

บทคัดย่อ

บทนำ: นิโคติน (nicotine) และ เอ็นไนโตรโซไดเอธาโนลามีน (N-nitrosodiethanolamine, NDELA) เป็นสารพิษต่อตับและเป็นสารตั้งต้นของสารก่อมะเร็งในตับของมนุษย์และสัตว์ ไซโตโครมพี 450 1 เอ (CYP1A) และ 2 เอ (CYP2A) เป็นเอนไซม์หลักในกระบวนการเมแทบอลิซึมของนิโคตินและไนโตรซามีนในตับแต่ความรู้เกี่ยวกับกลไกการควบคุมเอนไซม์เหล่านี้ยังมีจำกัด การศึกษานี้จึงมีวัตถุประสงค์เพื่อศึกษาผลของนิโคตินและ NDELA ต่อการควบคุมการแสดงออกที่ระดับเอ็มอาร์เอ็นเอของ CYPs และตัวรับในนิวเคลียส ได้แก่ ตัวรับเอริลไฮโดรคาร์บอน (aryl hydrocarbon receptor, AhR) ตัวรับคอนสติตูทีฟแอนโดรสเตน (constitutive androstane receptor, CAR) และตัวรับเพรกเนนเอ็กซ์ (pregnane X receptor, PXR) ในเซลล์มะเร็งตับของมนุษย์ (HepG2) วิธีการทดลอง: เซลล์ HepG2 (5x105 เซลล์ต่อหลุม) เพาะเลี้ยงในอาหารเลี้ยง DMEM ที่เสริมด้วย 10% FBS และบ่มร่วมกับนิโคตินหรือ NDELA (1, 10, and 100 μM) เป็นเวลา 24 ชั่วโมงเปรียบเทียบกับกลุ่มควบคุม หรือ 0.1% เอธิลแอลกอฮอล์ (EtOH) ซึ่งเป็นตัวทำละลายของนิโคตินและ NDELA จากนั้นทำการสกัด total RNA และตรวจวัดการแสดงออกที่ระดับเอ็มอาร์เอ็นเอด้วยเทคนิค RT-qPCR ผลการทดลอง: ทั้งนิโคตินและ NDLEA ที่ความเข้มข้น 100 μM เพิ่มการแสดงออกที่ระดับเอ็มอาร์เอ็นเอของ CYP1A2, CYP2A6 และ CYP2A13 อย่างมีนัยสำคัญทางสถิติ ยิ่งไปกว่านี้นิโคตินและ NDELA ยังเพิ่มการแสดงออกที่ระดับเอ็มอาร์เอ็นเอของ AhR และ CAR อย่างมีนัยสำคัญทางสถิติ ที่น่าสนใจคือ นิโคตินเหนี่ยวนำเอ็มอาร์เอ็นเอของ PXR ในขณะที่ NDELA ไม่ส่งผลเปลี่ยนแปลง เอ็มอาร์เอ็นเอของ PXR สรุป: กลไกการควบคุมการแสดงออกของ CYP1A2 และ CYP2A6/13 โดยนิโคตินและ NDELA มี AhR และ CAR เป็นปัจจัยกำหนด อย่างไรก็ตามความแตกต่างในกลไกการควบคุมการแสดงออกของ PXR โดยนิโคตินและ NDELA เป็นประเด็นที่น่าสนใจในการศึกษาต่อไป

Article Details

ประเภทบทความ
เภสัชศาสตร์ (Pharmaceutical Sciences)

เอกสารอ้างอิง

Anandatheerthavarada HK, Williams JF, Wecker L. Differential effect of chronic nicotine administration on brain cytochrome P4501A1/2 and P4502E1. Biochem Biophys Res Commun 1993;194:312-8. doi:10.1006/bbrc.1993.1821.

Bao Z, He X, Ding X, Prabhu S, Hong JY. Metabolism of nicotine and cotinine metabolized by Cytochrome P450 2A13. Drug Metab Dispos 2005;33:258-61. doi:10.1124/dmd.104.002105.

Bergen A, Caporaso N. Cigarette smoking. J Natl Cancer Inst 1999;91:1365-75. doi:https://doi.org/10.1093/jnci/91.16.1365.

Brunnemann K, Hoffmann D. Assessment of the carcinogenic N-nitrosodiethanolamine in tobacco products and tobacco smoke. Carcinogenesis 1981;2:1123-27. doi: https://doi.org/10.1093/carcin/2.11.1123.

Chai SC, Cherian MT, Wang YM, Chen T. Small-molecule modulators of PXR and CAR. Biochim Biophys Acta 2016;1859:1141-54. doi:10.1016/j.bbagrm.2016.02.013.

Chiang HC, Wang CY, Lee HL, Tsou TC. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation-a mammalian cell-based mutagenesis approach. Toxicol Appl Pharmacol 2011;253:145-52. doi:10.1016/j.taap.2011.03.022.

Cupp MJ, Tracy TS. Cytochrome P450: new nomenclature and clinical implications. Am Fam Physician 1998;57:107 LP-116.

Fan TY, Goff US, Fine DH, Song L, Arsenault GP, Biemann K. N-Nitrosodiethanolamine in cosmetics, lotions and shampoos. Fd Comer Toxicol 1977;6:423-30. doi: https://doi.org/10.1016/S0015-6264(77)80007-2.

Ferguson CS, Miksys S, Palmour RM, Tyndale RF. Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys. J Pharmacol Exp Ther 2012;343:628-37. doi:10.1124/jpet.112.198564.

Goodwin B, Moore L, Stoltz C, McKee D, Kliewer S. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol 2001;60:427 LP-431.

Hilfrich J, Schmeltz I, Hoffman D. Effects of N-nitrosodiethanolamine and 1,1-diethanolhydrazine in Syrian golden hamsters. Cancer Lett 1978;4:55-60. doi: 10.1016/S0304-3835(78)93412-2.

Honkakoski P, Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 2000;347:321 LP-337.

Honkakoski P, Zelko I, Sueyoshi T, Negishi M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 1998;18:5652 LP-5658.

Hukkanen J, Jacob P, Peng M, Dempsey D, Benowitz N. Effect of nicotine on cytochrome P450 1A2 activity. Br J Clin Pharmacol 2011;71:836-8. doi:10.1111/j.1365-2125.2011.04023.

Iba M, Fung J. Induction of pulmonary cytochrome P4501A1: interactive effects of nicotine and mecamylamine. Eur J Pharmacol 1999;383:399-403. doi:10.1016/S0014-2999(99)00639-1.

Itoh M, Nakajima M, Higashi E, Yoshida R, Nagata K, Yamazoe Y, et al. Induction of human CYP2A6 is mediated by the pregnane X receptor with peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. J Pharmacol Exp Ther 2006;319:693-702. doi:10.1124/jpet.106.107573.

Jagerstad M, Skog K. Genotoxicity of heat-processed foods. Mutat Res 2005;574:156-72. doi:10.1016/j.mrfmmm.2005.01.030.

Miyazaki M, Sugawara E, Yoshimura T, Yamazaki H, Kamataki T. Mutagenic activation of betel quid-specific N-nitrosamines catalyzed by human cytochrome P450 coexpressed with NADPH-cytochrome P450 reductase in Salmonella typhimurium YG7108. Mutat Res 2005;581:165-71. doi:10.1016/j.mrgentox.2004.12.002.

Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signaling pathways and environmental carcinogenesis. Nat Rev Cancer 2006;12:947-60. doi:10.1038/nrc2015.

Niemelä O, Parkkila S, Juvonen R, Viitala K, Gelboin H, Pasanen M. Cytochromes P450 2A6, 2E1, and 3A and production of protein-aldehyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases. Hepatology 2000;33:893-901. doi:10.1016/S0168-8278(00)80120-8.

Niemelä O, Parkkila S, Pasanen M, Viitala K, Villanueva JA, Halsted CH. Induction of cytochrome P450 enzymes and generation of protein-aldehyde adducts are associated with sex-dependent sensitivity to alcohol-induced liver disease in micropigs. Hepatology 1999;30:1011-7. doi:10.1002/hep.510300413.

Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 2008;48:1-32. doi:10.1146/annurev.pharmtox.47.120505.105349.

Pavek P, Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metab 2008;9:123-43. doi:10.2174/138920008783571774.

Price RJ, Renwick AB, Walters DG, Young PJ, Lake BG. Metabolism of nicotine and induction of CYP1A forms in precision-cut rat liver and lung slices. Toxicol In Vitro 2004;18:179-85. doi:10.1016/j.tiv.2003.08.012.

Shimada T, Inoue K, Suzuki Y, Kawai T, Azuma E, Nakajima T. Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6J mice. Carcinogenesis 2002;23:1199-207. doi:https://doi.org/10.1093/carcin/23.7.1199.

Singha S, Singha K, Guptaa SP, Patel DK, Singh VK, Singh RK, et al. Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum. Brain Res 2009;1283:115-26. doi:10.1016/j.brainres.2009.06.002.

Su T, Bao Z, Zhang Q, Smith T, Hong JY, Ding X. Human Cytochrome P450 CYP2A13: predominant Expression in the Respiratory Tract and Its High Efficiency Metabolic Activation of a Tobacco-specific Carcinogen, 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2000;60:455 LP-460.

Verghese M, Rao DR, Chawan CB, Walker LT, Shackelford L. Anticarcinogenic effect of phytic acid (IP6): Apoptosis as a possible mechanism of action. LWT-Food Sci Technol 2006;39:1093-8. doi:https://doi.org/10.1016/j.lwt.2005.07.012.

Wang T, Chen M, Yan YE, Xiao FQ, Pan XL, Wang H. Growth retardation of fetal rats exposed to nicotine in utero: possible involvement of CYP1A1, CYP2E1 and P-glycoprotein. Environ Toxicol 2009;24:33-42. doi:10.1002/tox.20391.

Washio I, Maeda M, Sugiura C, Shiga R, Yoshida M, Nonen S. Cigarette smoke extract induces CYP2B6 through constitutive androstane receptor in hepatocytes. Drug Metab Dispos 2011;39:1-3. doi:10.1124/dmd.110.034504.

Wei C, Caccavale RJ, Weyand EH, Chen S, Iba MM. Induction of CYP1A1 and CYP1A2 expressions by prototypic and atypical inducers in the human lung. Cancer Lett 2002;178:25-36. doi:10.1016/S0304-3835(01)00809-6.

Yoshinari K, Yoda N, Toriyabe T, Yamazoe Y. Constitutive androstane receptor transcriptionally activates human CYP1A1 and CYP1A2 genes through a common regulatory element in the 5'-flanking region. Biochem Pharmacol 2010;79:261-9. doi:10.1016/j.bcp.2009.08.008.

Zuikova E, Ioannides C, Bailey A, Marczylo T. Effects of nicotine and E-cigarette fluids on cytochromes P450 in hCMEC/D3 blood-brain barrier cell line. Tob Prev Cessation 2018;4:151-3. doi:https://doi.org/10.18332/tpc/90508.