Pharmacogenomics of clozapine in schizophrenia patients and associations with efficacy and adverse drug reactions
Main Article Content
Abstract
Clozapine, an atypical antipsychotic drug, is approved for use in treatment-resistant schizophrenia or accompanied by persistent suicidal or self-injurious behavior. Multiple factors could play a role affecting the clinical response of clozapine in schizophrenic patients, including genetic variations. Our objectives were to evaluate the associations between host genetic factors and clinical response, as well as adverse drug reactions, in schizophrenia patients receiving clozapine. Methods: Consenting adults receiving clozapine for at least 1 month had a blood sample collected 12 hours after their last dose of clozapine. Clinical data and laboratory data were collected from patient chart. Genotyping candidate genes (CYP1A2, ABCB1, HTR2A; T102C, and DRD2; Taq IA) was performed TaqMan® real-time PCR. Plasma clozapine and its active metabolite (N-Desmethyl clozapine) concentrations were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Clinical responses were evaluated by CGI-S and Thai HoNOS scores. Results: The clinical symptoms of the majority of patients (88%, n=37/42) were normal to mildly ill in severity (CGI-S = 1-3); 5 patients were in the categories of normal or stable illness by CGI-S and Thai HoNOS (CGI-S = 1 and Thai HoNOS = 0). The average + standard deviation (min-max) dose of clozapine was 75.63±68 (6.25-400.00) mg/day. Dose-normalized clozapine concentrations were statistically significant lower in smokers than non-smokers (1.11+0.87 and 2.12+1.60 ng/mL/mg of dose per day, respectively). Moreover, dose-normalized clozapine concentrations were statistically significant higher in fluoxetine users than non-users (2.69±1.68 and 1.48±1.24 ng/mL/mg of dose per day, respectively). A genetic polymorphism of ABCB1 (rs1045642) was statistically significant associated with the ratio of clozapine to N-Desmethyl clozapine, as well as neutrophil profiles (% neutrophile of less than 50). The non-genetic factors, fluphenazine used and a genetic polymorphism of DRD2 Taq IA were statistically significant associated with the clinical response evaluated by CGI-S. Conclusion: We found associations between genetic polymorphisms of DRD2 (Taq IA) and ABCB1 gene (rs1045642) with clinical efficacy and potential adverse drug reaction of clozapine. These associations are likely complicated by multiple genes and their interactions and may also be related to clozapine dose or plasma concentrations. These preliminary findings support exploring other potential candidate genes that could provide a better understanding of the pharmacogenomics of clozapine and help optimize treatment for schizophrenia patients.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
In the case that some parts are used by others The author must Confirm that obtaining permission to use some of the original authors. And must attach evidence That the permission has been included
References
Alvir, J. M., Lieberman, J. A., Safferman, A. Z., Schwimmer, J. L., & Schaaf, J. A. (1993). Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med, 329(3), 162-167. doi:10.1056/nejm199307153290303
Athanasiou, M. C., Dettling, M., Cascorbi, I., Mosyagin, I., Salisbury, B. A., Pierz, K. A., et al. (2011). Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. J Clin Psychiatry, 72(4), 458-463. doi:10.4088/JCP.09m05527yel
Atkin, K., Kendall, F., Gould, D., Freeman, H., Liberman, J., & O'Sullivan, D. (1996). Neutropenia and agranulocytosis in patients receiving clozapine in the UK and Ireland. Br J Psychiatry, 169(4), 483-488. doi:10.1192/bjp.169.4.483
Boulton, D. W., DeVane, C. L., Liston, H. L., & Markowitz, J. S. (2002). In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci, 71(2), 163-169. doi:10.1016/s0024-3205(02)01680-6
Chakos, M., Lieberman, J., Hoffman, E., Bradford, D., & Sheitman, B. (2001). Effectiveness of second-generation antipsychotics in patients with treatment-resistant schizophrenia: a review and meta-analysis of randomized trials. Am J Psychiatry, 158(4), 518-526. doi:10.1176/appi.ajp.158.4.518
Chuwongwattana, S., Jantararoungtong, T., Prommas, S., Medhasi, S., Puangpetch, A., & Sukasem, C. (2020). Impact of CYP2C19, CYP3A4, ABCB1, and FMO3 genotypes on plasma voriconazole in Thai patients with invasive fungal infections. Pharmacol Res Perspect, 8(6), e00665. doi:10.1002/prp2.665
CLOZARIL [package insert]. (2017). In Novartis Pharmaceuticals Corporation (Ed.).
Couchman, L., Fisher, D. S., Subramaniam, K., Handley, S. A., Boughtflower, R. J., Benton, C. M., & Flanagan, R. J. (2018). Ultra-fast LC-MS/MS in therapeutic drug monitoring: Quantification of clozapine and norclozapine in human plasma. Drug Test Anal, 10(2), 323-329. doi:10.1002/dta.2223
de Leon, J., Rajkumar, A. P., Kaithi, A. R., Schoretsanitis, G., Kane, J. M., Wang, C.-Y., et al. (2020). Do Asian Patients Require Only Half of the Clozapine Dose Prescribed for Caucasians? A Critical Overview. Indian journal of psychological medicine, 42(1), 4-10. doi:10.4103/IJPSYM.IJPSYM_379_19
Eap, C. B., Bender, S., Jaquenoud Sirot, E., Cucchia, G., Jonzier-Perey, M., Baumann, P., et al. (2004). Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol, 24(2), 214-219. doi:10.1097/01.jcp.0000116646.91923.2f
Goldstein, J. I., Jarskog, L. F., Hilliard, C., Alfirevic, A., Duncan, L., Fourches, D., et al. (2014). Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles. Nat Commun, 5, 4757. doi:10.1038/ncomms5757
Gunes, A., & Dahl, M. L. (2008). Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics, 9(5), 625-637. doi:10.2217/14622416.9.5.625
Hoffmeyer, S., Burk, O., von Richter, O., Arnold, H. P., Brockmöller, J., Johne, A., et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A, 97(7), 3473-3478. doi:10.1073/pnas.050585397
Hwang, R., Shinkai, T., De Luca, V., Müller, D. J., Ni, X., Macciardi, F., et al. (2005). Association study of 12 polymorphisms spanning the dopamine D(2) receptor gene and clozapine treatment response in two treatment refractory/intolerant populations. Psychopharmacology (Berl), 181(1), 179-187. doi:10.1007/s00213-005-2223-5
Kwon, J. S., Kim, E., Kang, D. H., Choi, J. S., Yu, K. S., Jang, I. J., & Shin, S. G. (2008). Taq1A polymorphism in the dopamine D2 receptor gene as a predictor of clinical response to aripiprazole. Eur Neuropsychopharmacol, 18(12), 897-907. doi:10.1016/j.euroneuro.2008.07.010
Lewis, S. W., Barnes, T. R. E., Davies, L., Murray, R. M., Dunn, G., Hayhurst, K. P., et al. (2006). Randomized controlled trial of effect of prescription of clozapine versus other second-generation antipsychotic drugs in resistant schizophrenia. Schizophrenia bulletin, 32(4), 715-723. doi:10.1093/schbul/sbj067
Li, X., Papenberg, G., Kalpouzos, G., Bäckman, L., & Persson, J. (2018). Influence of the DRD2/ANKK1 Taq1A polymorphism on caudate volume in older adults without dementia. Brain Struct Funct, 223(6), 2653-2662. doi:10.1007/s00429-018-1650-0
Llanchezhian, R., Joseph, C. R., & Rabinarayan, A. (2012). Urushiol-induced contact dermatitis caused during Shodhana (purificatory measures) of Bhallataka (Semecarpus anacardium Linn.) fruit. Ayu, 33(2), 270-273. doi:10.4103/0974-8520.105250
McEvoy, J. P., Lieberman, J. A., Stroup, T. S., Davis, S. M., Meltzer, H. Y., Rosenheck, R. A., et al. (2006). Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry, 163(4), 600-610. doi:10.1176/appi.ajp.163.4.600
Medhasi, S., Pasomsub, E., Vanwong, N., Ngamsamut, N., Puangpetch, A., Chamnanphon, M., et al. (2016). Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder. Neuropsychiatr Dis Treat, 12, 843-851. doi:10.2147/ndt.S101580
Meltzer, H. Y. (1994). An overview of the mechanism of action of clozapine. J Clin Psychiatry, 55 Suppl B, 47-52.
Miura, I., Takeuchi, S., Katsumi, A., Mori, A., Kanno, K., Yang, Q., et al. (2012). Effects of aripiprazole and the Taq1A polymorphism in the dopamine D2 receptor gene on the clinical response and plasma monoamine metabolites level during the acute phase of schizophrenia. J Clin Psychopharmacol, 32(1), 106-109. doi:10.1097/JCP.0b013e31823f87ac
Moons, T., de Roo, M., Claes, S., & Dom, G. (2011). Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics, 12(8), 1193-1211. doi:10.2217/pgs.11.55
National Library of Medicine. (2021). Reference SNP (rs) Report. Retrieved from https://www.ncbi.nlm.nih.gov/snp/rs7787082?vertical_tab=true
Nielsen, J., Dahm, M., Lublin, H., & Taylor, D. (2010). Psychiatrists' attitude towards and knowledge of clozapine treatment. J Psychopharmacol, 24(7), 965-971. doi:10.1177/0269881108100320
Noble, E. P. (2003). D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet, 116b(1), 103-125. doi:10.1002/ajmg.b.10005
Numata, S., Umehara, H., Ohmori, T., & Hashimoto, R. (2018). Clozapine Pharmacogenetic Studies in Schizophrenia: Efficacy and Agranulocytosis. Front Pharmacol, 9, 1049. doi:10.3389/fphar.2018.01049
Nuntamool, N., Ngamsamut, N., Vanwong, N., Puangpetch, A., Chamnanphon, M., Hongkaew, Y., et al. (2017). Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents. Basic Clin Pharmacol Toxicol, 121(4), 316-324. doi:10.1111/bcpt.12803
Pirmohamed, M., Williams, D., Madden, S., Templeton, E., & Park, B. K. (1995). Metabolism and bioactivation of clozapine by human liver in vitro. J Pharmacol Exp Ther, 272(3), 984-990.
Pohjalainen, T., Rinne, J. O., Någren, K., Lehikoinen, P., Anttila, K., Syvälahti, E. K., & Hietala, J. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry, 3(3), 256-260. doi:10.1038/sj.mp.4000350
Ruan, C. J., Zang, Y. N., Wang, C. Y., Cheng, Y. H., Sun, C., Spina, E., & de Leon, J. (2019). Clozapine Metabolism in East Asians and Caucasians: A Pilot Exploration of the Prevalence of Poor Metabolizers and a Systematic Review. J Clin Psychopharmacol, 39(2), 135-144. doi:10.1097/jcp.0000000000001018
Saito, T., Ikeda, M., Mushiroda, T., Ozeki, T., Kondo, K., Shimasaki, A., et al. (2016). Pharmacogenomic Study of Clozapine-Induced Agranulocytosis/Granulocytopenia in a Japanese Population. Biol Psychiatry, 80(8), 636-642. doi:10.1016/j.biopsych.2015.12.006
Siskind, D. J., Lee, M., Ravindran, A., Zhang, Q., Ma, E., Motamarri, B., & Kisely, S. (2018). Augmentation strategies for clozapine refractory schizophrenia: A systematic review and meta-analysis. Aust N Z J Psychiatry, 52(8), 751-767. doi:10.1177/0004867418772351
Spina, E., Avenoso, A., Facciolà, G., Fabrazzo, M., Monteleone, P., Maj, M., et al. (1998). Effect of fluoxetine on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenia. Int Clin Psychopharmacol, 13(3), 141-145. doi:10.1097/00004850-199805000-00009
Sriretnakumar, V., Huang, E., & Müller, D. J. (2015). Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update. Expert Opin Drug Metab Toxicol, 11(11), 1709-1731. doi:10.1517/17425255.2015.1075003
Sudthanaphan, K. (2014). Prevalence and characteristic of clozapine induced neutropenia in patients with schizophrinia. Journal of Somdet Chaopraya Institute of Psychiatry, 8(1), 11-21.
Thorn, C. F., Müller, D. J., Altman, R. B., & Klein, T. E. (2018). PharmGKB summary: clozapine pathway, pharmacokinetics. Pharmacogenet Genomics, 28(9), 214-222. doi:10.1097/FPC.0000000000000347
Tiihonen, J., Mittendorfer-Rutz, E., Majak, M., Mehtälä, J., Hoti, F., Jedenius, E., et al. (2017). Real-World Effectiveness of Antipsychotic Treatments in a Nationwide Cohort of 29 823 Patients With Schizophrenia. JAMA Psychiatry, 74(7), 686-693. doi:10.1001/jamapsychiatry.2017.1322
van der Weide, K., Loovers, H., Pondman, K., Bogers, J., van der Straaten, T., Langemeijer, E., et al. (2017). Genetic risk factors for clozapine-induced neutropenia and agranulocytosis in a Dutch psychiatric population. Pharmacogenomics J, 17(5), 471-478. doi:10.1038/tpj.2016.32
Wagmann, L., Meyer, M. R., & Maurer, H. H. (2016). What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse? Toxicol Lett, 258, 55-70. doi:10.1016/j.toxlet.2016.06.013
Wohlfarth, A., Toepfner, N., Hermanns-Clausen, M., & Auwärter, V. (2011). Sensitive quantification of clozapine and its main metabolites norclozapine and clozapine-N-oxide in serum and urine using LC-MS/MS after simple liquid-liquid extraction work-up. Anal Bioanal Chem, 400(3), 737-746. doi:10.1007/s00216-011-4831-8