Comparative Mucin Production in Biliary and Intestinal Epithelium of Opisthorchiasis-Susceptible and Non-Susceptible Animal Models

Main Article Content

Woro Danur Wendo
Theerayut Thongrin
Khao Keonam
Kanin Salao
Prasert Saichua
Sutas Suttiprapa
Prasarn Tangkawattana
Sirikachorn Tangkawattana

Abstract

Objectives: This study aimed to investigate the mucin production change within biliary and intestinal epithelia following Opisthorchis viverrini infection in susceptible and non-susceptible animal models.


Materials and Methods: We examined archived paraffin blocks from a time-series study involving two animal models of opisthorchiasis. Hamsters and Balb/c-R/J mice were categorized as susceptible and non-susceptible models, respectively. Histopathological and histochemical (AB-PAS staining) techniques were used to assess mucin production, specifically the mucin index, in both biliary and intestinal epithelia. Statistical analysis was performed to compare differences between epithelium types in both animal models and between non-infection (NI) and O. viverrini-infected (OV) groups.


Results: Goblet cell metaplasia of biliary epithelium was detected in the OV group of both animal models. The response was early in the mice model and late in the hamster model. Histochemical examination revealed mixed-type mucin in hamster bile duct and villous of duodenum, with acid-type mucin in duodenal submucosal glands and neutral-type among zymogen granules. Mice predominantly displayed acid-type mucin in the bile duct and mixed-type mucin in the intestine. The intestinal epithelium consistently exhibits a higher mucin index than the hamster's bile duct. In contrast, no statistical difference exists between mice's biliary and intestinal epithelia after day 2 post-infection.


Conclusions: Goblet cell metaplasia was observed as a response in the biliary epithelium, producing mucin in response to OV infection of both susceptible and non-susceptible models. This response was less pronounced in the intestine.

Article Details

Section
Research articles

References

Adams DH, 1996. Biliary epithelial cells: innocent victims or active participants in immune-mediated liver disease?. J Lab Clin Med 6(128), 528-530.

Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ, 2019. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 16(5), 269-281.

Bancroft J, Stevens A, Tumer D. 1990. Theory and practice of histological techniques, 3rd. Edinburgh. Churchil Livinsgstone, 360-361.

Bell RG, Adams LS, Ogden RW, 1984. Intestinal mucus trapping in the rapid expulsion of Trichinella spiralis by rats: induction and expression analyzed by quantitative worm recovery. Infect Immun 45(1), 267-272.

Bhamarapravati N, Thammavit, W, Vajrasthira S, 1978. Liver changes in hamsters infected with a liver fluke of man, Opisthorchis viverrini. Am J Trop Med Hyg 27(4), 787-794.

Boonmars T, Aukkanimart R, Sriraj P, Boonjaraspinyo S, Luamuanwai P, Songsri J, Sripan P, 2018. Opisthorchis viverrini, 803-812.

Boonmars T, Boonjaraspinyo S, Kaewsamut B, 2009. Animal models for Opisthorchis viverrini infection. Parasitol Res 104(3), 701-703.

Cheung AC, Lorenzo Pisarello MJ, LaRusso NF, 2018. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 1864(4 Pt B), 1220-1231.

Cortes A, Munoz-Antoli C, Sotillo J, Fried B, Esteban JG, Toledo R, 2015. Echinostoma caproni (Trematoda): differential in vivo mucin expression and glycosylation in high- and low-compatible hosts. Parasite Immunol 37(1), 32-42.

Else K, Finkelman FD, 1998. Invited review Intestinal nematode parasites, cytokines and effector mechanisms. Int J Parasitol 28(8), 1145-1158.

Fujino T, Fried B, 1993. Echinostoma caproni and E. trivolvis alter the binding of glycoconjugates in the intestinal mucosa of C3H mice as determined by lectin histochemistry. J Helminthol 67(3), 179-188.

Fujino T, Fried B, 1996. The expulsion of Echinostoma trivolvis from C3H mice: differences in glycoconjugates in mouse versus hamster small intestinal mucosa during infection. J Helminthol 70(2), 115-121.

Fujino T, Fried B, Ichikawa H, Tada I, 1996. Rapid expulsion of the intestinal trematodes Echinostoma trivolvis and E. caproni from C3H mice by trapping with increased goblet cell mucins. Int J Parasitol 26(3), 319-324.

Glaser SS, Gaudio E, Rao A, Pierce LM, Onori P, Franchitto A, Francis HL, Dostal DE, Venter JK, DeMorrow S, 2009. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab Invest 89(4), 456-469.

Hasnain SZ, Dawson PA, Lourie R, Hutson P, Tong H, Grencis RK, McGuckin MA, Thornton DJ, 2017a. Immune-driven alterations in mucin sulphation is an important mediator of Trichuris muris helminth expulsion. PLoS Pathog 13(2), e1006218.

Hasnain SZ, Dawson PA, Lourie R, Hutson P, Tong H, Grencis RK, McGuckin MA, Thornton DJ, 2017b. Immune-driven alterations in mucin sulphation is an important mediator of Trichuris muris helminth expulsion. PLoS Pathog 13(2), e1006218.

Hasnain SZ, Gallagher AL, Grencis RK, Thornton DJ, 2013. A new role for mucins in immunity: insights from gastrointestinal nematode infection. Int J Biochem Cell Biol, 45(2), 364-374.

IARC, 1994. Infection with liver flukes Opisthorchis viverrini, Opisthorchis felineus and Clonorchis sinensis, IARC. Monogr Eval Carcinog Risks Hum 61, 121–175.

Ishikawa N, 1994. Histochemical characteristics of the goblet cell mucins and their role in defence mechanisms against Nippostrongylus brasiliensis infection in the small intestine of mice. Parasite Immunol 16(12), 649-654.

Ishikawa N, Horii Y, Nawa Y, 1993. Immune-mediated alteration of the terminal sugars of goblet cell mucins in the small intestine of Nippostrongylus brasiliensis-infected rats. Immunology 78(2), 303.

Lvova MN, Tangkawattana S, Balthaisong S, Katokhin AV, Mordvinov VA, Sripa B, 2012. Comparative histopathology of Opisthorchis felineus and Opisthorchis viverrini in a hamster model: an implication of high pathogenicity of the European liver fluke. Parasitol Int 61(1), 167-172.

Mairiang E, 2017. Ultrasonographic features of hepatobiliary pathology in opisthorchiasis and opisthorchiasis-associated cholangiocarcinoma. Parasitol Int 66(4), 378-382.

Maruyama H, Hirabayashi Y, El-Malky M, Okamura S, Aoki M, Itagaki T, Nakamura-Uchiyama F, Nawa Y, Shimada S, Ohta N, 2002. Strongyloides venezuelensis: longitudinal distribution of adult worms in the host intestine is influenced by mucosal sulfated carbohydrates. Exp Parasitol 100(3), 179-185.

McGuckin MA, Lindén, SK, Sutton P, Florin TH, 2011. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9(4), 265-278.

Nithikathkul C, Tesana S, Sithithaworn P, Balakanich S, 2007. Early stage biliary and intrahepatic migration of Opisthorchis viverrini in the golden hamster. J Helminthol 81(1), 39-42.

Pinlaor S, Onsurathum S, Boonmars T, Pinlaor P, Hongsrichan N, Chaidee A, Haonon O, Limviroj W, Tesana S, Kaewkes S, 2013. Distribution and abundance of Opisthorchis viverrini metacercariae in cyprinid fish in Northeastern Thailand. Korean J Parasitol 51(6), 703.

Pinto C, Giordano DM, Maroni L, Marzioni M, 2018. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis 1864(4 Pt B), 1270-1278.

Sato K, Meng F, Giang T, Glaser S, Alpini G, 2018. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis 1864(4 Pt B), 1262-1269.

Soga K, Yamauchi J, Kawai Y, Yamada M, Uchikawa R, Tegoshi T, Mitsufuji S, Yoshikawa T, Arizono N, 2008. Alteration of the expression profiles of acidic mucin, sialytransferase, and sulfotransferases in the intestinal epithelium of rats infected with the nematode Nippostrongylus brasiliensis. Parasitol Res 103(6), 1427-1434.

Sripa B, 2003. Pathobiology of opisthorchiasis: an update. Acta Trop 88(3), 209-220.

Sripa B and Kaewkes S, 2002. Gall bladder and extrahepatic bile duct changes in Opisthorchis viverrini-infected hamsters. Acta Trop 83(1):29-36.

Sripa B, Tangkawattana S, Brindley PJ, 2018a. Update on Pathogenesis of Opisthorchiasis and Cholangiocarcinoma. Adv Parasitol 102, 97-113.

Sripa B, Tangkawattana S, Brindley PJ, 2018b. Update on Pathogenesis of Opisthorchiasis and Cholangiocarcinoma. Adv Parasitol 102, 97-113.

Strazzabosco M, Fiorotto R, Cadamuro M, Spirli C, Mariotti V, Kaffe E, Scirpo R, Fabris L, 2018. Pathophysiologic implications of innate immunity and autoinflammation in the biliary epithelium. Biochim Biophys Acta Mol Basis Dis 1864(4), 1374-1379.

Suyapoh W, Tirnitz-Parker JE, Tangkawattana S, Suttiprapa S, Sripa B, 2021. Biliary migration, colonization, and pathogenesis of O. viverrini co-Infected with CagA+ Helicobacter pylori. Pathogens 10(9), 1089.

Tangkawattana S, Suyapoh W, Taiki N, Tookampee P, Chitchak R, Thongrin T, Tangkawattana P, 2023. Unraveling the relationship among inflammatory responses, oxidative damage, and host susceptibility to Opisthorchis viverrini infection: A comparative analysis in animal models. Vet world, 2303-2312.

Theodoropoulos G, Hicks SJ, Corfield AP, Miller BG, Carrington SD, 2001. The role of mucins in host–parasite interactions: Part II–helminth parasites. Trends Parasitol 17(3), 130-135.

Thongrin T, Suyapoh W, Wendo W, Tangkawattana P, Sukon P, Salao K, Suttiprapa S, Saichua P, Tangkawatana S, 2023. Inflammatory cell responses in biliary mucosa during Opisthorchis viverrini infection: Insights into susceptibility differences among hosts. Open Vet J 13(9), 1150-1166.

Tsubokawa D, Ishiwata K, Goso Y, Yokoyama T, Kanuka H, Ishihara K, Nakamura T, Tsuji N, 2015. Induction of Sda-sialomucin and sulfated H-sulfomucin in mouse small intestinal mucosa by infection with parasitic helminth. Exp Parasitol 153, 165-173.

Tsubokawa D, Nakamura T, Goso Y, Takano Y, Kurihara M, Ishihara K, 2009. Nippostrongylus brasiliensis: increase of sialomucins reacting with anti-mucin monoclonal antibody HCM31 in rat small intestinal mucosa with primary infection and reinfection. Exp Parasitol 123(4), 319-325.

Van Panhuys N, Camberis M, Yamada M, Tegoshi T, Arizono N, Le Gros G, 2013a. Mucosal trapping and degradation of Nippostrongylus brasiliensis occurs in the absence of STAT6. Parasitology 140(7), 833-843.

Webb R, Hoque T, Dimas S, 2007. Expulsion of the gastrointestinal cestode, Hymenolepis diminuta by tolerant rats: evidence for mediation by a Th2 type immune enhanced goblet cell hyperplasia, increased mucin production and secretion. Parasite Immunol 29(1), 11-21.

Wendo WD, Tangkawattana S, Saichua P, Ta BT, Candra AR, Tangkawattana P, Suttiprapa S, 2022. Immunolocalization and functional analysis of Opisthorchis viverrini-M60-like-1 metallopeptidase in animal models. Parasitology 149(10), 1356-1363.

Yamauchi J, Kawai Y, Yamada M, Uchikawa R, Tegoshi T, Arizono N, 2006. Altered expression of goblet cell and mucin glycosylation related genes in the intestinal epithelium during infection with the nematode Nippostrongylus brasiliensis in rat. Apmis 114(4), 270-278.

Zhu C, Fuchs CD, Halilbasic E, Trauner M, 2016. Bile acids in regulation of inflammation and immunity: friend or foe. Clin Exp Rheumatol 34(4 Suppl 98), 25-31.