DNA damage response and the potential use of DDR inhibitors as anticancer drugs in veterinary medicine

Main Article Content

Naowarat Suthamnatpong
Aranya Ponpornpisit

Abstract

The DNA damage response (DDR) play an important role in maintaining the correct sequence of DNA and the accuracy of DNA replication processes. Several studies demonstrated DDR gene mutations in most types of cancers, suggesting that DDR plays a key role in carcinogenesis. At present, there is a tremendous interest in development of molecularly-targeted, anti-cancer agents as a new type of cancer treatment. One of the DDR-targeted therapy approaches involves the specific inhibitors of some important regulatory molecules of the DDR such as PARP inhibitors, histone deacetylase inhibitors and proteasome inhibitors. The purpose of this article is to provide detailed information on DDR as an important pathway for treating cancer, and the potential use of some DDR inhibitors as anticancer drugs in veterinary medicine.

Article Details

Section
Review articles

References

Alhmoud FJ, Woolley JF, Moustafa AA, Malki MI, 2020. DNA damage/repair management in cancers. Cancers 12(4), 1050-1069.

Anuar MNN, Hisam NNS, Liew SL & Ugusman A, 2020. Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. Front Pharmacol 11 Article 564108, 1-16.

Arlt A, Bauer I, Schafmayer C, Tepel J, Sebens Müerköster S, Brosch M, Röder C, Kalthoff H, Hampe J, Moyer MP, Fölsch UR, Schäfer H, 2009. Increased proteasome subunit protein expression and proteasome activity colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 28(45), 3983–3996.

Basu AK, 2018. DNA damage, mutagenesis and cancer. Int J Mol Sci 19, 970-983.

Bhaskara S, 2015. Histone deacetylases 1 and 2 regulate DNA replication and DNA repair: potential targets for genome stability-mechanism-based therapeutics for a subset of cancers. Cell Cycle 14(12), 1779-1785.

Bose P, Dai Y, Grant S, 2014. Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights. Pharmacol Ther 143(3), 323-336.

Brown JS, Jackson SP, 2015. Ubiquitylation, neddylation and the DNA damage response. Open Biol 5, 150018.

Butera A, Melino G, Amelio I, 2021. Epigenetic Drivers of Cancer. JMB 433(15), 167094.

Chabanon RM, Rouanne M, Lord CJ, Soria JC, Pasero P, Postel-Vinay S, 2021. Targeting the DNA damage response in immunooncology: developments and opportunities. Nat Rev Cancer 21, 701–717.

Chatterjee N, Walker GC, 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58, 235–263.

Cheng B, Pan W, Xing Y, Xiao Y, Chen J, Xu Z, 2022. Recent advances in DDR (DNA damage response) inhibitors for cancer therapy. Eur J Med Chem 230, 114109.

Cho SH, Seung BJ, Kim SH, Lim HY, Sur JH, 2020. Overexpression and mutation of p53 exons 4–8 in canine intestinal adenocarcinoma. J Comp Pathol 175, 79-84.

Cohen LA, Powers B, Amin S, Desai D, 2004. Treatment of canine hemangiosarcoma with suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Vet Comp Oncol 2(4), 243-248.

Compton C, 2020. Chapter 2 Cancer initiation, promotion, and progression and the acquisition of key behavioral traits. In: Compton C (Eds.) Cancer: The Enemy from Within. London.

Delic J, Masdehors P, Omura S, Cosset JM, Dumont J, Binet JL, Magdelenat H, 1998. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-αinitiated apoptosis. Br J Cancer 77, 1103–1107.

Demeyer A, Benhelli-Mokrani H, Chénais B, Weigela P, Fleury F, 2021. Inhibiting homologous recombination by targeting RAD51 protein. Biochim Biophys Acta Rev Cancer 1876(2), 188597.

Doyle J, 2010. A review of Histone Deacetylase inhibitors and their application in veterinary medicine. Hung Vet Arch 235, B-9349.

Drexler HC, 1997. Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 94, 855–860.

Engelhardt M, Waldschmidt JM, Wäsch R, 2022. Proteasome inhibition: the dawn of novel therapies in multiple myeloma. Haematologica 107(5), 1018-1019.

Enginler SO, Akiş I, Toydemir TSF, Oztabak K, Haktanir D, Gündüz MC, Kırşan I, Fırat I, 2014. Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours. Vet Res Commun 38(1), 21-27.

Fricker LD, 2020. Proteasome Inhibitor Drugs. Annu Rev Pharmacol Toxicol 60, 457–476.

Galanty Y, Belotserkovskaya R, Coates J, Jackson SP, 2012. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 26, 1179–1195.

Gallo LH, Ko J, Donoghue DJ, 2017. The importance of regulatory ubiquitination in cancer and metastasis, Cell Cycle 16(7), 634-648.

Gerke I, Kaup FJ, Neumann S, 2018. 26S Proteasome and insulin-like growth factor-1 in serum of dogs suffering from malignant tumors. Can J Vet Res 82, 115–123.

Gray M, Meehan J, Martínez-Pérez C, Kay C, Turnbull AK, Morrison LR, Pang LY, Argyle D, 2020. Naturally-occurring canine mammary tumors as a translational model for human breast cancer. Front Oncol 10, 617-631.

Groselj B, Sharma NL, Hamdy FC, Kerr M, Kiltie AE, 2013. Histone deacetylase inhibitors as radiosensitizers: effects on DNA damage signaling and repair. Br J Cancer 108, 748–54

Grosse N, Van Loon B, Rohrer BC, 2014. DNA damage response and DNA repair-dog as a model? BMC Cancer 14(1), 1- 8.

Guo HJ, Tadi P. Biochemistry, Ubiquitination [internet]. Treasure Island (FL): StatPearls Publishing; 2022 [Cited 2022 Sep 13]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556052/

Hanahan D. 2022. Hallmarks of cancer: New dimensions. Cancer Discov 12(1), 31-46.

Hernández-Suárez B, Gillespie DA, Pawlak A, 2022. DNA damage response proteins in canine cancer as potential research targets in comparative oncology. Vet Comp Oncol 20(2), 347-361.

Huang R, Zhou PK, 2021. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Sig Transduct Target Ther 6, 254-289.

Ito K, Kobayashi M, Kuroki S, Sasaki Y, Iwata T, Mori K, Kuroki T, Ozawa Y, Tetsuka M, Nakagawa T, Hiroi T, Yamamoto H, Ono K, Washizu T, Bonkobara M, 2013. The proteasome inhibitor bortezomib inhibits the growth of canine malignant melanoma cells in vitro and in vivo. Vet J 198(3), 577-582.

Jenke R, Rebing N, Hansen FK, Aigner A, Buch T, 2021. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers 13(4), 634-645.

Kiweler N, Wünsch D, Wirth M, et al. 2020. Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes. J Cancer Res Clin Oncol 146, 343–356.

Klaunig JE, 2020. Chapter 8 Carcinogenesis. In: Pope CN, Liu J (Eds.) An Introduction to Interdisciplinary Toxicology: From Molecules to Man. New York.

Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD, 2011. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol 48(1), 98-116.

Kumatori A, Tanaka K, Inamura N, Sone S, Ogura T, Matsumoto T, Tachikawa T, Shin S, Ichihara A, 1990. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA 87(18), 7071–7075.

Lam FC, 2022. The DNA damage response - from cell biology to human disease. J Transl Genet Genom 6, 204-222.

Laver T, Lee BM, Gogal RM, 2022. Bortezomib inhibits the proteasome, leading to cell death via apoptosis in feline injection site sarcoma cells in vitro. AJVR 83(6), 1-6.

LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N, Neuberg D, Goloubeva O, Pien CS, Adams J, Gupta D, Richardson PG, Munshi NC, Anderson KC, 2002. Proteasome inhibitor PS-341 inhibits human myeloma cell growth ในกาย and prolongs survival in a murine model. Cancer Res 62, 4996–5000.

Lee JH, Choy M, Ngo L, Foster SS, Marks PA, 2010. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. PNAS 107(33), 14639-14644.

Li G, Tian Y, Zhu WG, 2020. The roles of histone deacetylases and their inhibitors in cancer therapy. Front Cell Dev Biol 8, 576946.

Liu J, Bi K, Yang R, Li H, Nikitaki Z, Chang L, 2020. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future. Int J Radiat Biol 96(11), 1329-1338.

Lou Z, Chen J, 2005. Mammalian DNA damage response pathway. Genome Instability in Cancer Development. Springer-Verlag 570, 425- 455.

Manasanch EE, Orlowski RZ, 2017. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 17(4), 417-433.

Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R, 2007. FDA Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T-Cell Lymphoma. Oncologist 12(10), 1247–1252.

Masai H, Foiani M, 2017. DNA replication: from old principles to new discoveries. 1st ed. Singapore: Springer Singapore.

Milazzo G, Mercatelli D, Muzio GD, Triboli L, Rosa PD, Perini G, Giorgi FM, 2020. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes 11, 556-605.

Minchom A, Aversa C, Lopez J, 2018. Dancing with the DNA damage response: next-generation anti-cancer therapeutic strategies. Ther Adv Med Oncol 10, 1-18.

Murahari S, Jalkanen AL, Kulp SK, Chen CS, Modiano JF, London CA, Kisseberth WC, 2017. Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis. BMC Cancer 17, 67-78.

Nakajima W, Tanaka N, 2016. BH3 mimetics: Their action and efficacy in cancer chemotherapy. Integr Cancer Sci Therap 3, 1000184.

Neilsen PM, Pehere AD, Pishas KI, Callen DF, Abell AD, 2013. New 26S proteasome inhibitors with high selectivity for chymotrypsin-like activity and p53-dependent cytotoxicity. ACS Chem Biol 8(2), 353-359.

Niida H, Nakanishi M, 2006. DNA damage checkpoints in mammals. Mutagenesis 21(1), 3- 9.

Nunes AT, Annunziata CM, 2017. Proteasome inhibitors: structure and function. Semin Oncol 44(6), 377-380.

O’Connor MJ, 2015. Targeting the DNA Damage Response in Cancer. Mol Cell 60(4), 547-560.

O'Neil N, Bailey M, Hieter P, 2017. Synthetic lethality and cancer. Nat Rev Genet 18, 613–623.

Pao PC, Patnaik D, Watson LA, Gao F, Pan L, Wang J, Adaikkan C, Penney J, Cam HP, Huang WC, Pantano L, Lee A, Nott A, Phan TX, Gjoneska E, Elmsaouri S, Haggarty SJ, Tsai LH, 2020. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease. Nat Commun 11(1), 2484.

Pao PC, Penney J, Tsa LH, 2019. Examining the role of HDACs in DNA double-strand break repair in neurons. In: Brosh, Jr., R. (eds) Protein Acetylation. Methods in Molecular Biology, Humana, New York, NY. 1983. 225–234.

Patel M, Nowsheen S, Maraboyina S, Xia F, 2020. The role of poly(ADP-ribose) polymerase inhibitors in the treatment of cancer and methods to overcome resistance: a review. Cell biosci 10, 35-46.

Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FMG, 2015. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15, 166-180.

Pommier Y, O'Connor MJ, de Bono J, 2016. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8(362), 362ps17.

Popovic D, Vucic D, Dikic I, 2014. Ubiquitination in disease pathogenesis and treatment. Nat Med 20, 1242–1253.

Prevedel NE. Effect of proteasome inhibitors on canine lymphoma cell response to CHOP chemotherapy in vitro. 2021 [Cited 2022 May 11]. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/26654?show=full

Rungsipipat A, Tateyama S, Yamaguchi R, Uchida K, Miyoshi N, Hayashi T, 1999. Immunohistochemical analysis of c-yes and c-erbB-2 oncogene products and p53 tumor suppressor protein in canine mammary tumors. J Vet Med Sci 61(1), 27-32.

Saba C, Paoloni M, Mazcko C, Kisseberth W, Burton JH, Smith A, Wilson-Robles H, Allstadt S, Vail D, Henry C, Luna S, Ehrhart EJ, Charles B, Kent M, Lawrence J, Burgess K, Borgatti A, Suter S, Woods P, Gordon I, Vrignaud P, Khanna C, LeBlanc AK, 2016. A comparative oncology study of Iniparib defines its pharmacokinetic profile and biological activity in a naturally-occurring canine cancer model. PLoS One 11(2), e0149194.

Sandhu P, Andrews PA, Baker MP, Koeplinger KA, Soli ED, Miller T, Baillie TA, 2007. Disposition of Vorinostat, A Novel Histone Deacetylase Inhibitor and Anticancer Agent, in Preclinical Species. Drug Metab Lett 1(2), 153 – 161.

Sanford KK, Parshad R, 1999. The contribution of deficient DNA repair to chromosomal radiosensitivity of CHO cells after G2 irradiation. Cancer Genet Cytogenet 108(1), 38-41

Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, Adams J, Callery MO, 2001. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 82(1), 110–122.

Spies J, Polasek-Sedlackova H, Lukas J, Somyajit K, 2021. Homologous recombination as a fundamental genome surveillance mechanism during DNA replication. Genes 12(12), 1960-1979.

Stewart-Ornstein J, Cheng HW, Lahav G, 2017. Conservation and divergence of p53 oscillation dynamics across species. Cell Syst 5(4), 410- 417.

Sun T, Liu Z, Yang Q, 2020. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 19, 146-165.

Suzuki T, Aoshima K, Yamazaki J, Kobayashi A, Kimura T, 2022. Manipulating histone acetylation leads to antitumor effects in hemangiosarcoma cells. Vet Comp Oncol 21, 1-12.

Swatek KN, Komander D, 2016. Ubiquitin modifications. Cell Res 26(4), 399-422.

Takeshima H, Ushijima T, 2019. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. npj Precis Onc 3, Article 7.

Thamm DH, 2008. Histone deacetylase: An epigenetic target for cancer therapy. ACVIM 2008. [Cited 2022 September 12]. Available from: https://www.vin.com/apputil/content/defaultadv1.aspx?id=3865583&pid=11262

Thumser-Henner P, Nytko KJ, Bley CR, 2020. Mutations of BRCA2 in canine mammary tumors and their targeting potential in clinical therapy. BMC Vet Res 16, 30-51.

Toh M, Ngeow J, 2021. Homologous recombination deficiency: cancer predispositions and treatment implications, Oncologist 26(9), e1526–e1537.

Trenner A & Sartori AA, 2019. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front Oncol 9, 1-10.

Tubbs A, Nussenzweig A, 2017. Endogenous DNA damage as a source of genomic instability in cancer. Cell, 168, 644–656.

UpToDate (2022). Vorinostat: drug information. [Cited 2022 September 12]. Available from: https://www.uptodate.com/contents/vorinostat-drug-information?search=vorinostat&source=panel_search_result&selectedTitle=1~25&usage_type=panel&kp_tab=drug_general&display_rank=1#F16322954

Wertz IE, Wang X, 2019. From discovery to bedside: Targeting the ubiquitin system. Cell Chem Biol 26(2), 156-177.

Yin M, Hong F, Wang QE, 2022. Chapter 9 DNA Damage Response and Cancer Metastasis: Clinical Implications and Therapeutic Opportunities. In: Sergi, CM (Eds) Metastasis. Brisbane.

Zhang H, Ji L, Yang Y, Zhang X, Gang Y, Bai L, 2020. The role of HDACs and HDACi in cartilage and osteoarthritis. Front Cell Dev Biol 8, Article 560117.

Zhang J, Chen X, Kent MS, Rodriguez CO, Chen X, 2009. Establishment of a dog model for the p53 family pathway and identification of a novel isoform of p21 cyclin-dependent kinase inhibitor. Mol Cancer Res 7(1), 67- 78.

Zhao C, Dong H, Xu Q, Zhang Y, 2020. Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin Ther Pat 30, 263-274.